Comparison of Energy Conversion Efficiencies
Energy conversion efficiency is measured by dividing the electrical power produced by the cell by the light power falling on the cell. Many factors influence the electrical power output, including spectral distribution, spatial distribution of power, temperature, and resistive load applied to the cell. IEC standard 61215 is used to compare the performance of cells and is designed around terrestrial, temperate conditions, using its standard temperature and conditions (STC): irradiance of 1 kW/m2, a spectral distribution close to solar radiation through AM (airmass) of 1.5 and a cell temperature 25 °C. The resistive load is varied until the peak or maximum power point (MPP) is achieved. The power at this point is recorded as Watt-peak (Wp). The same standard is used for measuring the power and efficiency of PV modules,
Air mass has an effect on power output. In space, where there is no atmosphere, the spectrum of the sun is relatively unfiltered. However, on earth, with air filtering the incoming light, the solar spectrum changes. To account for the spectral differences, a system was devised to calculate this filtering effect. Simply, the filtering effect ranges from Air Mass 0 (AM0) in space, to approximately Air Mass 1.5 on Earth. Multiplying the spectral differences by the quantum efficiency of the solar cell in question will yield the efficiency of the device. For example, a silicon solar cell in space might have an efficiency of 14% at AM0, but have an efficiency of 16% on earth at AM 1.5. Terrestrial efficiencies typically are greater than space efficiencies.
Solar cell efficiencies vary from 6% for amorphous silicon-based solar cells to 40.7% with multiple-junction research lab cells and 42.8% with multiple dies assembled into a hybrid package. Solar cell energy conversion efficiencies for commercially available multicrystalline Si solar cells are around 14-19%. The highest efficiency cells have not always been the most economical — for example a 30% efficient multijunction cell based on exotic materials such as gallium arsenide or indium selenide and produced in low volume might well cost one hundred times as much as an 8% efficient amorphous silicon cell in mass production, while only delivering about four times the electrical power.
However, there is a way to "boost" solar power. By increasing the light intensity, typically photogenerated carriers are increased, resulting in increased efficiency by up to 15%. These so-called "concentrator systems" have only begun to become cost-competitive as a result of the development of high efficiency GaAs cells. The increase in intensity is typically accomplished by using concentrating optics. A typical concentrator system may use a light intensity 6-400 times the sun, and increase the efficiency of a one sun GaAs cell from 31% at AM 1.5 to 35%.
A common method used to express economic costs of electricity-generating systems is to calculate a price per delivered kilowatt-hour (kWh). The solar cell efficiency in combination with the available irradiation has a major influence on the costs, but generally speaking the overall system efficiency is important. Using the commercially available solar cells (as of 2006) and system technology leads to system efficiencies between 5 and 19%. As of 2005, photovoltaic electricity generation costs ranged from ~0.60 US$/kWh (0.50 €/kWh) (central Europe) down to ~0.30 US$/kWh (0.25 €/kWh) in regions of high solar irradiation. This electricity is generally fed into the electrical grid on the customer's side of the meter. The cost can be compared to prevailing retail electric pricing (as of 2005), which varied from between 0.04 and 0.50 US$/kWh worldwide. These cost/kWh calculations will vary depending on the assumed useful life of the system. Most c-Si panels are warranted for 25 years and should see 35+ years of useful life.
Read more about this topic: Quantum Efficiency Of A Solar Cell
Famous quotes containing the words comparison of, comparison, energy and/or conversion:
“But the best read naturalist who lends an entire and devout attention to truth, will see that there remains much to learn of his relation to the world, and that it is not to be learned by any addition or subtraction or other comparison of known quantities, but is arrived at by untaught sallies of the spirit, by a continual self-recovery, and by entire humility.”
—Ralph Waldo Emerson (18031882)
“We teach boys to be such men as we are. We do not teach them to aspire to be all they can. We do not give them a training as if we believed in their noble nature. We scarce educate their bodies. We do not train the eye and the hand. We exercise their understandings to the apprehension and comparison of some facts, to a skill in numbers, in words; we aim to make accountants, attorneys, engineers; but not to make able, earnest, great- hearted men.”
—Ralph Waldo Emerson (18031882)
“The tendencies of the times favor the idea of self-government, and leave the individual, for all code, to the rewards and penalties of his own constitution, which work with more energy than we believe, whilst we depend on artificial restraints.”
—Ralph Waldo Emerson (18031882)
“The conversion of a savage to Christianity is the conversion of Christianity to savagery.”
—George Bernard Shaw (18561950)