Quantum Computer - Relation To Computational Complexity Theory

Relation To Computational Complexity Theory

The class of problems that can be efficiently solved by quantum computers is called BQP, for "bounded error, quantum, polynomial time". Quantum computers only run probabilistic algorithms, so BQP on quantum computers is the counterpart of BPP ("bounded error, probabilistic, polynomial time") on classical computers. It is defined as the set of problems solvable with a polynomial-time algorithm, whose probability of error is bounded away from one half. A quantum computer is said to "solve" a problem if, for every instance, its answer will be right with high probability. If that solution runs in polynomial time, then that problem is in BQP.

BQP is contained in the complexity class #P (or more precisely in the associated class of decision problems P#P), which is a subclass of PSPACE.

BQP is suspected to be disjoint from NP-complete and a strict superset of P, but that is not known. Both integer factorization and discrete log are in BQP. Both of these problems are NP problems suspected to be outside BPP, and hence outside P. Both are suspected to not be NP-complete. There is a common misconception that quantum computers can solve NP-complete problems in polynomial time. That is not known to be true, and is generally suspected to be false.

The capacity of a quantum computer to accelerate classical algorithms has rigid limits — upper bounds of quantum computation's complexity. The overwhelming part of classical calculations cannot be accelerated on a quantum computer. A similar fact takes place for particular computational tasks, like the search problem, for which Grover's algorithm is optimal.

Although quantum computers may be faster than classical computers, those described above can't solve any problems that classical computers can't solve, given enough time and memory (however, those amounts might be practically infeasible). A Turing machine can simulate these quantum computers, so such a quantum computer could never solve an undecidable problem like the halting problem. The existence of "standard" quantum computers does not disprove the Church–Turing thesis. It has been speculated that theories of quantum gravity, such as M-theory or loop quantum gravity, may allow even faster computers to be built. Currently, defining computation in such theories is an open problem due to the problem of time, i.e. there currently exists no obvious way to describe what it means for an observer to submit input to a computer and later receive output.

Read more about this topic:  Quantum Computer

Famous quotes containing the words relation to, relation, complexity and/or theory:

    The psychoanalysis of individual human beings, however, teaches us with quite special insistence that the god of each of them is formed in the likeness of his father, that his personal relation to God depends on his relation to his father in the flesh and oscillates and changes along with that relation, and that at bottom God is nothing other than an exalted father.
    Sigmund Freud (1856–1939)

    The whole point of Camp is to dethrone the serious. Camp is playful, anti-serious. More precisely, Camp involves a new, more complex relation to “the serious.” One can be serious about the frivolous, frivolous about the serious.
    Susan Sontag (b. 1933)

    The price we pay for the complexity of life is too high. When you think of all the effort you have to put in—telephonic, technological and relational—to alter even the slightest bit of behaviour in this strange world we call social life, you are left pining for the straightforwardness of primitive peoples and their physical work.
    Jean Baudrillard (b. 1929)

    Everything to which we concede existence is a posit from the standpoint of a description of the theory-building process, and simultaneously real from the standpoint of the theory that is being built. Nor let us look down on the standpoint of the theory as make-believe; for we can never do better than occupy the standpoint of some theory or other, the best we can muster at the time.
    Willard Van Orman Quine (b. 1908)