Quantum Cloning

Quantum cloning is the process that takes an arbitrary, unknown quantum state and makes an exact copy without altering the original state in any way. In Dirac notation, the process of quantum cloning is described by:

,

where is the actual cloning operation, is the state to be cloned, and is the initial state of the copy.

Quantum cloning is forbidden by the laws of quantum mechanics as shown by the no cloning theorem, which proves that there is no that can perform the cloning operation for any arbitrary state . Though perfect quantum cloning is not possible, it is possible to perform imperfect cloning, where the copies have a non-unit fidelity with the state being cloned.

The quantum cloning operation is the best way to make copies of quantum information therefore cloning is an important task in quantum information processing, especially in the context of quantum cryptography. Researchers are seeking ways to build quantum cloning machines, which work at the so-called quantum limit. The first cloning machine relied on stimulated emission to copy quantum information encoded into single photons. Teleportation, nuclear magnetic resonance, quantum amplification and superior phase conjugation have been some other methods utilized to realize a quantum cloning machine.

Famous quotes containing the words quantum and/or cloning:

    The receipt to make a speaker, and an applauded one too, is short and easy.—Take of common sense quantum sufficit, add a little application to the rules and orders of the House, throw obvious thoughts in a new light, and make up the whole with a large quantity of purity, correctness, and elegancy of style.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)

    Language is as real, as tangible, in our lives as streets, pipelines, telephone switchboards, microwaves, radioactivity, cloning laboratories, nuclear power stations.
    Adrienne Rich (b. 1929)