Experimental Tests
The notion of quark flavors was prompted by the necessity of explaining the properties of hadrons during the development of the quark model. The notion of color was necessitated by the puzzle of the Δ++. This has been dealt with in the section on the history of QCD.
The first evidence for quarks as real constituent elements of hadrons was obtained in deep inelastic scattering experiments at SLAC. The first evidence for gluons came in three jet events at PETRA.
Several good quantitative tests of perturbative QCD exist:
- The running of the QCD coupling as deduced from many observations
- Scaling violation in polarized and unpolarized deep inelastic scattering
- Vector boson production at colliders (this includes the Drell-Yan process)
- Jet cross sections in colliders
- Event shape observables at the LEP
- Heavy-quark production in colliders
Quantitative tests of non-perturbative QCD are fewer, because the predictions are harder to make. The best is probably the running of the QCD coupling as probed through lattice computations of heavy-quarkonium spectra. There is a recent claim about the mass of the heavy meson Bc . Other non-perturbative tests are currently at the level of 5% at best. Continuing work on masses and form factors of hadrons and their weak matrix elements are promising candidates for future quantitative tests. The whole subject of quark matter and the quark-gluon plasma is a non-perturbative test bed for QCD which still remains to be properly exploited.
Read more about this topic: Quantum Chromodynamics
Famous quotes containing the words experimental and/or tests:
“Whenever a man acts purposively, he acts under a belief in some experimental phenomenon. Consequently, the sum of the experimental phenomena that a proposition implies makes up its entire bearing upon human conduct.”
—Charles Sanders Peirce (18391914)
“One of the tests of the civilization of people is the treatment of its criminals.”
—Rutherford Birchard Hayes (18221893)