T1
The T1 method. is an efficient computational approach developed for calculating accurate heats of formation of uncharged, closed-shell molecules comprising H, C, N, O, F, Si, P, S, Cl and Br, within experimental error. It is practical for molecules up to molecular weight ~ 500 a.m.u.
T1 method as incorporated in Spartan consists of:
- HF/6-31G* optimization.
- RI-MP2/6-311+G(2d,p) single point energy with dual basis set.
- An empirical correction using atom counts, Mulliken bond orders, HF/6-31G* and RI-MP2 energies as variables.
T1 follows the G3(MP2) recipe, however, by substituting an HF/6-31G* for the MP2/6-31G* geometry, eliminating both the HF/6-31G* frequency and QCISD(T)/6-31G* energy and approximating the MP2/G3MP2large energy using dual basis set RI-MP2 techniques, the T1 method reduces computation time by up to 3 orders of magnitude. Atom counts, Mulliken bond orders and HF/6-31G* and RI-MP2 energies are introduced as variables in a linear regression fit to a set of 1126 G3(MP2) heats of formation. The T1 procedure reproduces these values with mean absolute and RMS errors of 1.8 and 2.5 kJ/mol, respectively. T1 reproduces experimental heats of formation for a set of 1805 diverse organic molecules from the NIST thermochemical database with mean absolute and RMS errors of 8.5 and 11.5 kJ/mol, respectively.
Read more about this topic: Quantum Chemistry Composite Methods