Quantum Annealing - Quantum Mechanics: Analogy & Advantage

Quantum Mechanics: Analogy & Advantage

The tunneling field is basically a kinetic energy term that does not commute with the classical potential energy part of the original glass. The whole process can be simulated in a computer using quantum Monte Carlo (or other stochastic technique), and thus obtain a heuristic algorithm for finding the ground state of the classical glass.

In the case of annealing a purely mathematical objective function, one may consider the variables in the problem to be classical degrees of freedom, and the cost functions to be the potential energy function (classical Hamiltonian). Then a suitable term consisting of non-commuting variable(s) (i.e. variables that has non-zero commutator with the variables of the original mathematical problem) has to be introduced artificially in the Hamiltonian to play the role of the tunneling field (kinetic part). Then one may carry out the simulation with the quantum Hamiltonian thus constructed (the original function + non-commuting part) just as described above. Here, there is a choice in selecting the non-commuting term and the efficiency of annealing may depend on that.

It has been demonstrated experimentally as well as theoretically, that quantum annealing can indeed outperform thermal annealing in certain cases, especially, where the potential energy (cost) landscape consists of very high but thin barriers surrounding shallow local minima. Since thermal transition probabilities (~; => Temperature, => Boltzmann constant) depend only on the height of the barriers, for very high barriers, it is extremely difficult for thermal fluctuations to get the system out from such local minima. However, as argued earlier in Ray et al. (1989), the quantum tunneling probability through the same barrier depends not only the height of the barrier, but also on its width and is approximately given by ; => Tunneling field. If the barriers are thin enough, quantum fluctuations can surely bring the system out of the shallow local minima. This advantage in quantum search (compared to the classical effort growing linearly with or, the problem size) is well established.

It is speculated that in a quantum computer, such simulations would be much more efficient and exact than that done in a classical computer, because it can perform the tunneling directly, rather than needing to add it by hand. Moreover, it may be able to do this without the tight error controls needed to harness the quantum entanglement used in more traditional quantum algorithms.

Read more about this topic:  Quantum Annealing

Famous quotes containing the words quantum, analogy and/or advantage:

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)

    The analogy between the mind and a computer fails for many reasons. The brain is constructed by principles that assure diversity and degeneracy. Unlike a computer, it has no replicative memory. It is historical and value driven. It forms categories by internal criteria and by constraints acting at many scales, not by means of a syntactically constructed program. The world with which the brain interacts is not unequivocally made up of classical categories.
    Gerald M. Edelman (b. 1928)

    I should have no objection to go over the same life from its beginning to the end: requesting only the advantage authors have, of correcting in a second edition the faults of the first.
    Benjamin Franklin (1706–1790)