Quantifier Elimination - History

History

In early model theory, quantifier elimination was used to demonstrate that various theories possess certain model-theoretic properties like decidability and completeness. A common technique was to show first that a theory admits elimination of quantifiers and thereafter prove decidability or completeness by considering only the quantifier-free formulas. This technique is used to show that Presburger arithmetic, i.e. the theory of the additive natural numbers, is decidable.

Theories could be decidable yet not admit quantifier elimination. Strictly speaking, the theory of the additive natural numbers did not admit quantifier elimination, but it was an expansion of the additive natural numbers that was shown to be decidable. Whenever a theory in a countable language is decidable, it is possible to extend its language with countably many relations to ensure that it admits quantifier elimination (for example, one can introduce a relation symbol for each formula).

Example: Nullstellensatz in ACF and DCF.

Read more about this topic:  Quantifier Elimination

Famous quotes containing the word history:

    The history of all Magazines shows plainly that those which have attained celebrity were indebted for it to articles similar in natureto Berenice—although, I grant you, far superior in style and execution. I say similar in nature. You ask me in what does this nature consist? In the ludicrous heightened into the grotesque: the fearful coloured into the horrible: the witty exaggerated into the burlesque: the singular wrought out into the strange and mystical.
    Edgar Allan Poe (1809–1849)

    The whole history of civilisation is strewn with creeds and institutions which were invaluable at first, and deadly afterwards.
    Walter Bagehot (1826–1877)