Problem Formulation
The quadratic programming problem can be formulated as:
Assume x belongs to space. Both x and c are column vectors with n elements (n×1 matrices), and Q is a symmetric n×n matrix.
Minimize (with respect to x)
Subject to one or more constraints of the form:
- (inequality constraint)
- (equality constraint)
where indicates the vector transpose of . The notation means that every entry of the vector is less than or equal to the corresponding entry of the vector .
If the matrix is positive semidefinite, then is a convex function: In this case the quadratic program has a global minimizer if there exists some feasible vector (satisfying the constraints) and if is bounded below on the feasible region. If the matrix is positive definite and the problem has a feasible solution, then the global minimizer is unique.
If is zero, then the problem becomes a linear program.
A related programming problem, quadratically constrained quadratic programming, can be posed by adding quadratic constraints on the variables.
Read more about this topic: Quadratic Programming
Famous quotes containing the words problem and/or formulation:
“The problem of the novelist who wishes to write about a mans encounter with God is how he shall make the experiencewhich is both natural and supernaturalunderstandable, and credible, to his reader. In any age this would be a problem, but in our own, it is a well- nigh insurmountable one. Todays audience is one in which religious feeling has become, if not atrophied, at least vaporous and sentimental.”
—Flannery OConnor (19251964)
“In necessary things, unity; in disputed things, liberty; in all things, charity.”
—Variously Ascribed.
The formulation was used as a motto by the English Nonconformist clergyman Richard Baxter (1615-1691)