Problem Formulation
The quadratic programming problem can be formulated as:
Assume x belongs to space. Both x and c are column vectors with n elements (n×1 matrices), and Q is a symmetric n×n matrix.
Minimize (with respect to x)
Subject to one or more constraints of the form:
- (inequality constraint)
- (equality constraint)
where indicates the vector transpose of . The notation means that every entry of the vector is less than or equal to the corresponding entry of the vector .
If the matrix is positive semidefinite, then is a convex function: In this case the quadratic program has a global minimizer if there exists some feasible vector (satisfying the constraints) and if is bounded below on the feasible region. If the matrix is positive definite and the problem has a feasible solution, then the global minimizer is unique.
If is zero, then the problem becomes a linear program.
A related programming problem, quadratically constrained quadratic programming, can be posed by adding quadratic constraints on the variables.
Read more about this topic: Quadratic Programming
Famous quotes containing the words problem and/or formulation:
“Involuntary mental hospitalization is like slavery. Refining the standards for commitment is like prettifying the slave plantations. The problem is not how to improve commitment, but how to abolish it.”
—Thomas Szasz (b. 1920)
“You do not mean by mystery what a Catholic does. You mean an interesting uncertainty: the uncertainty ceasing interest ceases also.... But a Catholic by mystery means an incomprehensible certainty: without certainty, without formulation there is no interest;... the clearer the formulation the greater the interest.”
—Gerard Manley Hopkins (18441889)