Quadratic Function - The Square Root of A Quadratic Function

The Square Root of A Quadratic Function

The square root of a quadratic function gives rise to one of the four conic sections, almost always either to an ellipse or to a hyperbola. If then the equation describes a hyperbola. The axis of the hyperbola is determined by the ordinate of the minimum point of the corresponding parabola .
If the ordinate is negative, then the hyperbola's axis is horizontal. If the ordinate is positive, then the hyperbola's axis is vertical.
If then the equation describes either an ellipse or nothing at all. If the ordinate of the maximum point of the corresponding parabola is positive, then its square root describes an ellipse, but if the ordinate is negative then it describes an empty locus of points.

Read more about this topic:  Quadratic Function

Famous quotes containing the words square, root and/or function:

    Interpreting the dance: young women in white dancing in a ring can only be virgins; old women in black dancing in a ring can only be witches; but middle-aged women in colors, square dancing...?
    Mason Cooley (b. 1927)

    Perhaps the whole root of our trouble, the human trouble, is that we will sacrifice all the beauty of our lives, will imprison ourselves in totems, taboos, crosses, blood sacrifices, steeples, mosques, races, armies, flags, nations, in order to deny the fact of death, which is the only fact we have.
    James Baldwin (1924–1987)

    Nobody seriously questions the principle that it is the function of mass culture to maintain public morale, and certainly nobody in the mass audience objects to having his morale maintained.
    Robert Warshow (1917–1955)