Methods of Solution
Direct methods for solving the standard or generalized eigenvalue problems and are based on transforming the problem to Schur or Generalized Schur form. However, there is no analogous form for quadratic matrix polynomials. One approach is to transform the quadratic matrix polynomial to a linear matrix pencil, and solve a generalized eigenvalue problem. Once eigenvalues and eigenvectors of the linear problem have been determined, eigenvectors and eigenvalues of the quadratic can be determined.
The most common linearization is the first companion linearization
where is the -by- identity matrix, with corresponding eigenvector
We solve for and, for example by computing the Generalized Schur form. We can then take the first components of as the eigenvector of the original quadratic .
Read more about this topic: Quadratic Eigenvalue Problem
Famous quotes containing the words methods and/or solution:
“There are souls that are incurable and lost to the rest of society. Deprive them of one means of folly, they will invent ten thousand others. They will create subtler, wilder methods, methods that are absolutely DESPERATE. Nature herself is fundamentally antisocial, it is only by a usurpation of powers that the organized body of society opposes the natural inclination of humanity.”
—Antonin Artaud (18961948)
“There is a lot of talk now about metal detectors and gun control. Both are good things. But they are no more a solution than forks and spoons are a solution to world hunger.”
—Anna Quindlen (b. 1953)