Quadratic Classifier - Other Quadratic Classifiers

Other Quadratic Classifiers

While QDA is the most commonly used method for obtaining a classifier, other methods are also possible. One such method is to create a longer measurement vector from the old one by adding all pairwise products of individual measurements. For instance, the vector

would become

.

Finding a quadratic classifier for the original measurements would then become the same as finding a linear classifier based on the expanded measurement vector. This observation has been used in extending neural network models; the "circular" case, which corresponds to introducing only the sum of pure quadratic terms with no mixed products, has been proven to be the optimal compromise between extending the classifier's representation power and controlling the risk of overfitting (Vapnik-Chervonenkis dimension).

For linear classifiers based only on dot products, these expanded measurements do not have to be actually computed, since the dot product in the higher dimensional space is simply related to that in the original space. This is an example of the so-called kernel trick, which can be applied to linear discriminant analysis, as well as the support vector machine.

Read more about this topic:  Quadratic Classifier