QCD Matter - Phase Diagram

Phase Diagram

The phase diagram of quark matter is not well known, either experimentally or theoretically. A commonly conjectured form of the phase diagram is shown in the figure. It is applicable to matter in a compact star, where the only relevant thermodynamic potentials are quark chemical potential μ and temperature T. For guidance it also shows the typical values of μ and T in heavy-ion collisions and in the early universe. For readers who are not familiar with the concept of a chemical potential, it is helpful to think of μ as a measure of the imbalance between quarks and antiquarks in the system. Higher μ means a stronger bias favoring quarks over antiquarks. At low temperatures there are no antiquarks, and then higher μ generally means a higher density of quarks.

Ordinary atomic matter as we know it is really a mixed phase, droplets of nuclear matter (nuclei) surrounded by vacuum, which exists at the low-temperature phase boundary between vacuum and nuclear matter, at μ = 310 MeV and T close to zero. If we increase the quark density (i.e. increase μ) keeping the temperature low, we move into a phase of more and more compressed nuclear matter. Following this path corresponds to burrowing more and more deeply into a neutron star. Eventually, at an unknown critical value of μ, there is a transition to quark matter. At ultra-high densities we expect to find the color-flavor-locked (CFL) phase of color-superconducting quark matter. At intermediate densities we expect some other phases (labelled "non-CFL quark liquid" in the figure) whose nature is presently unknown,. They might be other forms of color-superconducting quark matter, or something different.

Now, imagine starting at the bottom left corner of the phase diagram, in the vacuum where μ = T = 0. If we heat up the system without introducing any preference for quarks over antiquarks, this corresponds to moving vertically upwards along the T axis. At first, quarks are still confined and we create a gas of hadrons (pions, mostly). Then around T = 150 MeV there is a crossover to the quark gluon plasma: thermal fluctuations break up the pions, and we find a gas of quarks, antiquarks, and gluons, as well as lighter particles such as photons, electrons, positrons, etc. Following this path corresponds to travelling far back in time (so to say), to the state of the universe shortly after the big bang (where there was a very tiny preference for quarks over antiquarks).

The line that rises up from the nuclear/quark matter transition and then bends back towards the T axis, with its end marked by a star, is the conjectured boundary between confined and unconfined phases. Until recently it was also believed to be a boundary between phases where chiral symmetry is broken (low temperature and density) and phases where it is unbroken (high temperature and density). It is now known that the CFL phase exhibits chiral symmetry breaking, and other quark matter phases may also break chiral symmetry, so it is not clear whether this is really a chiral transition line. The line ends at the "chiral critical point", marked by a star in this figure, which is a special temperature and density at which striking physical phenomena, analogous to critical opalescence, are expected. (Reference for this section:,).

For a complete description of phase diagram it is required that one must have complete understanding of dense, strongly interacting hadronic matter and strongly interacting quark matter from some underlying theory e.g. quantum chromodynamics (QCD). However because such a description requires the proper understanding of QCD in its non-perturbative regime, which is still far from being completely understood, any theoretical advance remains very challenging.

Read more about this topic:  QCD Matter

Famous quotes containing the words phase and/or diagram:

    I had let preadolescence creep up on me without paying much attention—and I seriously underestimated this insidious phase of child development. You hear about it, but you’re not a true believer until it jumps out at you in the shape of your own, until recently quite companionable child.
    Susan Ferraro (20th century)

    “God’s fire upon the wane,
    A diagram hung there instead,
    More women born than men.”
    William Butler Yeats (1865–1939)