Explanation
Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the bandwidth. Thus, a high-Q tuned circuit in a radio receiver would be more difficult to tune, but would have more selectivity; it would do a better job of filtering out signals from other stations that lie nearby on the spectrum. High-Q oscillators oscillate with a smaller range of frequencies and are more stable. (See oscillator phase noise.)
The quality factor of oscillators varies substantially from system to system. Systems for which damping is important (such as dampers keeping a door from slamming shut) have Q near ½. Clocks, lasers, and other resonating systems that need either strong resonance or high frequency stability have high quality factors. Tuning forks have quality factors around 1000. The quality factor of atomic clocks, superconducting RF cavities used in accelerators, and some high-Q lasers can reach as high as 1011 and higher.
There are many alternative quantities used by physicists and engineers to describe how damped an oscillator is. Important examples include: the damping ratio, relative bandwidth, linewidth and bandwidth measured in octaves.
The concept of "Q" originated with K.S. Johnson of Western Electric Company's Engineering Department while evaluating the quality of coils (inductors). His choice of the symbol Q was only because all other letters of the alphabet were taken. The term was not intended as an abbreviation for "quality" or "quality factor", although these terms have grown to be associated with it.
Read more about this topic: Q Factor
Famous quotes containing the word explanation:
“We live between two worlds; we soar in the atmosphere; we creep upon the soil; we have the aspirations of creators and the propensities of quadrupeds. There can be but one explanation of this fact. We are passing from the animal into a higher form, and the drama of this planet is in its second act.”
—W. Winwood Reade (18381875)
“Are cans constitutionally iffy? Whenever, that is, we say that we can do something, or could do something, or could have done something, is there an if in the offingsuppressed, it may be, but due nevertheless to appear when we set out our sentence in full or when we give an explanation of its meaning?”
—J.L. (John Langshaw)
“To develop an empiricist account of science is to depict it as involving a search for truth only about the empirical world, about what is actual and observable.... It must involve throughout a resolute rejection of the demand for an explanation of the regularities in the observable course of nature, by means of truths concerning a reality beyond what is actual and observable, as a demand which plays no role in the scientific enterprise.”
—Bas Van Fraassen (b. 1941)