Method
Pythagorean tuning is based on a stack of intervals called perfect fifths, each tuned in the ratio 3:2, the next simplest ratio after 2:1. Starting from D for example (D-based tuning), six other notes are produced by moving six times a ratio 3:2 up, and the remaining ones by moving the same ratio down:
- E♭—B♭—F—C—G—D—A—E—B—F♯—C♯—G♯
This succession of eleven 3:2 intervals spans across a wide range of frequency (on a piano keyboard, it encompasses 77 keys). Since notes differing in frequency by a factor of 2 are given the same name, it is customary to divide or multiply the frequencies of some of these notes by 2 or by a power of 2. The purpose of this adjustment is to move the 12 notes within a smaller range of frequency, namely within the interval between the base note D and the D above it (a note with twice its frequency). This interval is typically called the basic octave (on a piano keyboard, an octave encompasses only 13 keys ).
For instance, the A is tuned such that its frequency equals 3:2 times the frequency of D — if D is tuned to a frequency of 288 Hz, then A is tuned to 432 Hz. Similarly, the E above A is tuned such that its frequency equals 3:2 times the frequency of A, or 9:4 times the frequency of D — with A at 432 Hz, this puts E at 648 Hz. Since this E is outside the above-mentioned basic octave (i.e. its frequency is more than twice the frequency of the base note D), it is usual to halve its frequency to move it within the basic octave. Therefore, E is tuned to 324 Hz, a 9:8 above D. The B at 3:2 above that E is tuned to the ratio 27:16 and so on. Starting from the same point working the other way, G is tuned as 3:2 below D, which means that it is assigned a frequency equal to 2:3 times the frequency of D — with D at 288 Hz, this puts G at 192 Hz. This frequency is then doubled (to 384 Hz) to bring it into the basic octave.
When extending this tuning however, a problem arises: no stack of 3:2 intervals (perfect fifths) will fit exactly into any stack of 2:1 intervals (octaves). For instance a stack such as this, obtained by adding one more note to the stack shown above
- A♭—E♭—B♭—F—C—G—D—A—E—B—F♯—C♯—G♯
will be similar but not identical in size to a stack of 7 octaves. More exactly, it will be about a quarter of a semitone larger (see Pythagorean comma). Thus, A♭ and G♯, when brought into the basic octave, will not coincide as expected. The table below illustrates this, showing for each note in the basic octave the conventional name of the interval from D (the base note), the formula to compute its frequency ratio, its size in cents, and the difference in cents (labeled ET-dif in the table) between its size and the size of the corresponding one in the equally tempered scale.
Note | Interval from D | Formula | Frequency ratio |
Size (cents) |
ET-dif (cents) |
---|---|---|---|---|---|
A♭ | diminished fifth | 588.27 | -11.73 | ||
E♭ | minor second | 90.22 | −9.78 | ||
B♭ | minor sixth | 792.18 | −7.82 | ||
F | minor third | 294.13 | −5.87 | ||
C | minor seventh | 996.09 | −3.91 | ||
G | perfect fourth | 498.04 | -1.96 | ||
D | unison | 0 .00 | 0.00 | ||
A | perfect fifth | 701.96 | 1.96 | ||
E | major second | 203.91 | 3.91 | ||
B | major sixth | 905.87 | 5.87 | ||
F♯ | major third | 407.82 | 7.82 | ||
C♯ | major seventh | 1109.78 | 9.78 | ||
G♯ | augmented fourth | 611.73 | 11.73 |
In the formulas, the ratios 3:2 or 2:3 represent an ascending or descending perfect fifth (i.e. an increase or decrease in frequency by a perfect fifth), while 2:1 or 1:2 represent an ascending or descending octave.
The major scale based on C, obtained from this tuning is:
Note | C | D | E | F | G | A | B | C | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ratio | 1/1 | 9/8 | 81/64 | 4/3 | 3/2 | 27/16 | 243/128 | 2/1 | ||||||||
Step | — | 9/8 | 9/8 | 256/243 | 9/8 | 9/8 | 9/8 | 256/243 | — |
In equal temperament, pairs of enharmonic notes such as A♭ and G♯ are thought of as being exactly the same note — however, as the above table indicates, in Pythagorean tuning they have different ratios with respect to D, which means they are at a different frequency. This discrepancy, of about 23.46 cents, or nearly one quarter of a semitone, is known as a Pythagorean comma.
To get around this problem, Pythagorean tuning ignores A♭, and uses only the 12 notes from E♭ to G♯. This, as shown above, implies that only eleven just fifths are used to build the entire chromatic scale. The remaining fifth (from G♯ to E♭) is left badly out-of-tune, meaning that any music which combines those two notes is unplayable in this tuning. A very out-of-tune interval such as this one is known as a wolf interval. In the case of Pythagorean tuning, all the fifths are 701.96 cents wide, in the exact ratio 3:2, except the wolf fifth, which is only 678.49 cents wide, nearly a quarter of a semitone flatter.
If the notes G♯ and E♭ need to be sounded together, the position of the wolf fifth can be changed. For example, a C-based Pythagorean tuning would produce a stack of fifths running from D♭ to F♯, making F♯-D♭ the wolf interval. However, there will always be one wolf fifth in Pythagorean tuning, making it impossible to play in all keys in tune.
Read more about this topic: Pythagorean Tuning
Famous quotes containing the word method:
“The method of authority will always govern the mass of mankind; and those who wield the various forms of organized force in the state will never be convinced that dangerous reasoning ought not to be suppressed in some way.”
—Charles Sanders Peirce (18391914)
“I have a new method of poetry. All you got to do is look over your notebooks ... or lay down on a couch, and think of anything that comes into your head, especially the miseries.... Then arrange in lines of two, three or four words each, dont bother about sentences, in sections of two, three or four lines each.”
—Allen Ginsberg (b. 1926)
“You that do search for every purling spring
Which from the ribs of old Parnassus flows,
And every flower, not sweet perhaps, which grows
Near thereabouts into your poesy wring;
You that do dictionarys method bring
Into your rhymes, running in rattling rows;”
—Sir Philip Sidney (15541586)