Pythagorean Triple - Spinors and The Modular Group

Spinors and The Modular Group

Pythagorean triples can likewise be encoded into a matrix of the form

X = \begin{bmatrix}
c+b & a\\
a & c-b
\end{bmatrix}.

A matrix of this form is symmetric. Furthermore, the determinant of X is

which is zero precisely when (a,b,c) is a Pythagorean triple. If X corresponds to a Pythagorean triple, then as a matrix it must have rank 1.

Since X is symmetric, it follows from a result in linear algebra that there is a column vector ξ = T such that the outer product

(1)

holds, where the T denotes the matrix transpose. The vector ξ is called a spinor (for the Lorentz group SO(1, 2)). In abstract terms, the Euclid formula means that each primitive Pythagorean triple can be written as the outer product with itself of a spinor with integer entries, as in (1).

The modular group Γ is the set of 2×2 matrices with integer entries

with determinant equal to one: αδ − βγ = 1. This set forms a group, since the inverse of a matrix in Γ is again in Γ, as is the product of two matrices in Γ. The modular group acts on the collection of all integer spinors. Furthermore, the group is transitive on the collection of integer spinors with relatively prime entries. For if T has relatively prime entries, then

where u and v are selected (by the Euclidean algorithm) so that mu + nv = 1.

By acting on the spinor ξ in (1), the action of Γ goes over to an action on Pythagorean triples, provided one allows for triples with possibly negative components. Thus if A is a matrix in Γ, then

(2)

gives rise to an action on the matrix X in (1). This does not give a well-defined action on primitive triples, since it may take a primitive triple to an imprimitive one. It is convenient at this point (per Trautman 1998) to call a triple (a,b,c) standard if c > 0 and either (a,b,c) are relatively prime or (a/2,b/2,c/2) are relatively prime with a/2 odd. If the spinor T has relatively prime entries, then the associated triple (a,b,c) determined by (1) is a standard triple. It follows that the action of the modular group is transitive on the set of standard triples.

Alternatively, restrict attention to those values of m and n for which m is odd and n is even. Let the subgroup Γ(2) of Γ be the kernel of the group homomorphism

where SL(2,Z2) is the special linear group over the finite field Z2 of integers modulo 2. Then Γ(2) is the group of unimodular transformations which preserve the parity of each entry. Thus if the first entry of ξ is odd and the second entry is even, then the same is true of Aξ for all A ∈ Γ(2). In fact, under the action (2), the group Γ(2) acts transitively on the collection of primitive Pythagorean triples (Alperin 2005).

The group Γ(2) is the free group whose generators are the matrices

Consequently, every primitive Pythagorean triple can be obtained in a unique way as a product of copies of the matrices U and L.

Read more about this topic:  Pythagorean Triple

Famous quotes containing the word group:

    We often overestimate the influence of a peer group on our teenager. While the peer group is most influential in matters of taste and preference, we parents are most influential in more abiding matters of standards, beliefs, and values.
    David Elkind (20th century)