Pulse-code Modulation - Modulation

Modulation

In the diagram, a sine wave (red curve) is sampled and quantized for PCM. The sine wave is sampled at regular intervals, shown as ticks on the x-axis. For each sample, one of the available values (ticks on the y-axis) is chosen by some algorithm. This produces a fully discrete representation of the input signal (shaded area) that can be easily encoded as digital data for storage or manipulation. For the sine wave example at right, we can verify that the quantized values at the sampling moments are 7, 9, 11, 12, 13, 14, 14, 15, 15, 15, 14, etc. Encoding these values as binary numbers would result in the following set of nibbles: 0111 (23×0+22×1+21×1+20×1=0+4+2+1=7), 1001, 1011, 1100, 1101, 1110, 1110, 1111, 1111, 1111, 1110, etc. These digital values could then be further processed or analyzed by a digital signal processor. Several PCM streams could also be multiplexed into a larger aggregate data stream, generally for transmission of multiple streams over a single physical link. One technique is called time-division multiplexing (TDM) and is widely used, notably in the modern public telephone system.

The PCM process is commonly implemented on a single integrated circuit generally referred to as an analog-to-digital converter (ADC).

Read more about this topic:  Pulse-code Modulation

Famous quotes containing the word modulation:

    Every accent, every emphasis, every modulation of voice, was so perfectly well turned and well placed, that, without being interested in the subject, one could not help being pleased with the discourse; a pleasure of much the same kind with that received from an excellent piece of music. This is an advantage itinerant preachers have over those who are stationary, as the latter can not well improve their delivery of a sermon by so many rehearsals.
    Benjamin Franklin (1706–1790)