Mathematical Analysis
Finding a person innocent or guilty can be viewed in mathematical terms as a form of binary classification. If E is the observed evidence, and I stands for "accused is innocent" then consider the conditional probabilities:
- P(E|I) is the probability that the "damning evidence" would be observed even when the accused is innocent (a "false positive").
- P(I|E) is the probability that the accused is innocent, despite the evidence E.
With forensic evidence, P(E|I) is tiny. The prosecutor wrongly concludes that P(I|E) is comparatively tiny. (The Lucia de Berk prosecution is accused of exactly this error, for example.) In fact, P(E|I) and P(I|E) are quite different; using Bayes' theorem:
Where:
- P(I) is the probability of innocence independent of the test result (i.e. from all other evidence) and
- P(E) is the prior probability that the evidence would be observed (regardless of innocence):
- P(E|~I) is the probability that the evidence would identify a guilty suspect (not give a false negative). This is usually close to 100%, slightly increasing the inference of innocence over a test without false negatives. That inequality is concisely expressed in terms of odds:
The prosecutor is claiming a negligible chance of innocence, given the evidence, implying Odds(I|E) -> P(I|E), or that:
A prosecutor conflating P(I|E) with P(E|I) makes a technical error whenever Odds(I) >> 1. This may be a harmless error if P(I|E) is still negligible, but it is especially misleading otherwise (mistaking low statistical significance for high confidence).
Read more about this topic: Prosecutor's Fallacy
Famous quotes containing the words mathematical and/or analysis:
“All science requires mathematics. The knowledge of mathematical things is almost innate in us.... This is the easiest of sciences, a fact which is obvious in that no ones brain rejects it; for laymen and people who are utterly illiterate know how to count and reckon.”
—Roger Bacon (c. 1214c. 1294)
“A commodity appears at first sight an extremely obvious, trivial thing. But its analysis brings out that it is a very strange thing, abounding in metaphysical subtleties and theological niceties.”
—Karl Marx (18181883)