Mathematical Analysis
Finding a person innocent or guilty can be viewed in mathematical terms as a form of binary classification. If E is the observed evidence, and I stands for "accused is innocent" then consider the conditional probabilities:
- P(E|I) is the probability that the "damning evidence" would be observed even when the accused is innocent (a "false positive").
- P(I|E) is the probability that the accused is innocent, despite the evidence E.
With forensic evidence, P(E|I) is tiny. The prosecutor wrongly concludes that P(I|E) is comparatively tiny. (The Lucia de Berk prosecution is accused of exactly this error, for example.) In fact, P(E|I) and P(I|E) are quite different; using Bayes' theorem:
Where:
- P(I) is the probability of innocence independent of the test result (i.e. from all other evidence) and
- P(E) is the prior probability that the evidence would be observed (regardless of innocence):
- P(E|~I) is the probability that the evidence would identify a guilty suspect (not give a false negative). This is usually close to 100%, slightly increasing the inference of innocence over a test without false negatives. That inequality is concisely expressed in terms of odds:
The prosecutor is claiming a negligible chance of innocence, given the evidence, implying Odds(I|E) -> P(I|E), or that:
A prosecutor conflating P(I|E) with P(E|I) makes a technical error whenever Odds(I) >> 1. This may be a harmless error if P(I|E) is still negligible, but it is especially misleading otherwise (mistaking low statistical significance for high confidence).
Read more about this topic: Prosecutor's Fallacy
Famous quotes containing the words mathematical and/or analysis:
“As we speak of poetical beauty, so ought we to speak of mathematical beauty and medical beauty. But we do not do so; and that reason is that we know well what is the object of mathematics, and that it consists in proofs, and what is the object of medicine, and that it consists in healing. But we do not know in what grace consists, which is the object of poetry.”
—Blaise Pascal (16231662)
“... the big courageous acts of life are those one never hears of and only suspects from having been through like experience. It takes real courage to do battle in the unspectacular task. We always listen for the applause of our co-workers. He is courageous who plods on, unlettered and unknown.... In the last analysis it is this courage, developing between man and his limitations, that brings success.”
—Alice Foote MacDougall (18671945)