Propositional Calculus - Example 1. Simple Axiom System

Example 1. Simple Axiom System

Let, where, are defined as follows:

  • The alpha set, is a finite set of symbols that is large enough to supply the needs of a given discussion, for example:
  • Of the three connectives for conjunction, disjunction, and implication (, and ), one can be taken as primitive and the other two can be defined in terms of it and negation . Indeed, all of the logical connectives can be defined in terms of a sole sufficient operator. The biconditional can of course be defined in terms of conjunction and implication, with defined as .
    Adopting negation and implication as the two primitive operations of a propositional calculus is tantamount to having the omega set partition as follows:
  • An axiom system discovered by Jan Ɓukasiewicz formulates a propositional calculus in this language as follows. The axioms are all substitution instances of:
  • The rule of inference is modus ponens (i.e., from and, infer ). Then is defined as, and is defined as .

Read more about this topic:  Propositional Calculus

Famous quotes containing the words simple, axiom and/or system:

    It would not be an easy thing to bring the water all the way to the plain. They would have to organize a great coumbite with all the peasants and the water would unite them once again, its fresh breath would clear away the fetid stink of anger and hatred; the brotherly community would be reborn with new plants, the fields filled with to bursting with fruits and grains, the earth gorged with life, simple and fertile.
    Jacques Roumain (1907–1945)

    The writer who neglects punctuation, or mispunctuates, is liable to be misunderstood.... For the want of merely a comma, it often occurs that an axiom appears a paradox, or that a sarcasm is converted into a sermonoid.
    Edgar Allan Poe (1809–1845)

    Daily life is governed by an economic system in which the production and consumption of insults tends to balance out.
    Raoul Vaneigem (b. 1934)