Proper Motion - Usefulness in Astronomy

Usefulness in Astronomy

Stars with large proper motions tend to be nearby; most stars are far enough away that their proper motions are very small, on the order of a few thousandths of an arcsecond per year. It is possible to construct nearly complete samples of high proper motion stars by comparing photographic sky survey images taken many years apart. The Palomar Sky Survey is one source of such images. In the past, searches for high proper motion objects were undertaken using blink comparators to examine the images by eye, but modern efforts use techniques such as image differencing to automatically search through digitized image data. Because the selection biases of the resulting high proper motion samples are well-understood and well-quantified, it is possible to use them to construct an unbiased census of the nearby stellar population — how many stars exist of each true brightness, for example. Studies of this kind show that the local population of stars consists largely of intrinsically faint, inconspicuous stars such as red dwarfs.

Measurement of the proper motions of a large sample of stars in a distant stellar system, like a globular cluster, can be used to compute the cluster's total mass via the Leonard-Merritt mass estimator. Coupled with measurements of the stars' radial velocities, proper motions can be used to compute the distance to the cluster.

Stellar proper motions have been used to infer the presence of a super-massive black hole at the center of the Milky Way. This black hole is suspected to be Sgr A*, with a mass of 2.6 × 106 M, where M is a solar mass.

Proper motions of the galaxies in the Local Group are discussed in detail in Röser. In 2005, the first measurement was made of the proper motion of the Triangulum Galaxy M-33, the third largest and only ordinary spiral galaxy in the Local Group, located 860 ± 28 kpcs beyond the Milky Way. Although the Andromeda Galaxy is known to move, and an Andromeda–Milky Way collision is predicted in about 5 – 10 billion years, the proper motion of the Andromeda galaxy, about 786 kpc distant, is still an uncertain matter, with an upper bound on its transverse velocity of ≈ 100 km/s. Proper motion of the NGC 4258 (M106) galaxy in the M106 group of galaxies was used in 1999 to find an accurate distance to this object. Measurements were made of the radial motion of objects in that galaxy moving directly toward and away from us, and assuming this same motion to apply to objects with only a proper motion, the observed proper motion predicts a distance to the galaxy of 7.2 ± 0.5 Mpc.

Read more about this topic:  Proper Motion

Famous quotes containing the words usefulness and/or astronomy:

    What I am anxious to do is to secure my legislation.... What I want to do is to get through that, and if I can point to a record of usefulness of that kind, I am entirely willing to quit office.
    William Howard Taft (1857–1930)

    Awareness of the stars and their light pervades the Koran, which reflects the brightness of the heavenly bodies in many verses. The blossoming of mathematics and astronomy was a natural consequence of this awareness. Understanding the cosmos and the movements of the stars means understanding the marvels created by Allah. There would be no persecuted Galileo in Islam, because Islam, unlike Christianity, did not force people to believe in a “fixed” heaven.
    Fatima Mernissi, Moroccan sociologist. Islam and Democracy, ch. 9, Addison-Wesley Publishing Co. (Trans. 1992)