Proof Using Group Theory
This proof requires the most basic elements of group theory.
The idea is to recognise that the set G = {1, 2, …, p − 1}, with the operation of multiplication (taken modulo p), forms a group. The only group axiom that requires some effort to verify is that each element of G is invertible. Taking this on faith for the moment, let us assume that a is in the range 1 ≤ a ≤ p − 1, that is, a is an element of G. Let k be the order of a, so that k is the smallest positive integer such that
By Lagrange's theorem, k divides the order of G, which is p − 1, so p − 1 = km for some positive integer m. Then
Read more about this topic: Proofs Of Fermat's Little Theorem
Famous quotes containing the words proof, group and/or theory:
“There are some persons in this world, who, unable to give better proof of being wise, take a strange delight in showing what they think they have sagaciously read in mankind by uncharitable suspicions of them.”
—Herman Melville (18191891)
“We often overestimate the influence of a peer group on our teenager. While the peer group is most influential in matters of taste and preference, we parents are most influential in more abiding matters of standards, beliefs, and values.”
—David Elkind (20th century)
“Many people have an oversimplified picture of bonding that could be called the epoxy theory of relationships...if you dont get properly glued to your babies at exactly the right time, which only occurs very soon after birth, then you will have missed your chance.”
—Pamela Patrick Novotny (20th century)