Proof Using Group Theory
This proof requires the most basic elements of group theory.
The idea is to recognise that the set G = {1, 2, …, p − 1}, with the operation of multiplication (taken modulo p), forms a group. The only group axiom that requires some effort to verify is that each element of G is invertible. Taking this on faith for the moment, let us assume that a is in the range 1 ≤ a ≤ p − 1, that is, a is an element of G. Let k be the order of a, so that k is the smallest positive integer such that
By Lagrange's theorem, k divides the order of G, which is p − 1, so p − 1 = km for some positive integer m. Then
Read more about this topic: Proofs Of Fermat's Little Theorem
Famous quotes containing the words proof, group and/or theory:
“The fact that several men were able to become infatuated with that latrine is truly the proof of the decline of the men of this century.”
—Charles Baudelaire (18211867)
“...Womens Studies can amount simply to compensatory history; too often they fail to challenge the intellectual and political structures that must be challenged if women as a group are ever to come into collective, nonexclusionary freedom.”
—Adrienne Rich (b. 1929)
“It makes no sense to say what the objects of a theory are,
beyond saying how to interpret or reinterpret that theory in another.”
—Willard Van Orman Quine (b. 1908)