Proofs of Fermat's Little Theorem - Proof Using Group Theory

Proof Using Group Theory

This proof requires the most basic elements of group theory.

The idea is to recognise that the set G = {1, 2, …, p − 1}, with the operation of multiplication (taken modulo p), forms a group. The only group axiom that requires some effort to verify is that each element of G is invertible. Taking this on faith for the moment, let us assume that a is in the range 1 ≤ ap − 1, that is, a is an element of G. Let k be the order of a, so that k is the smallest positive integer such that

By Lagrange's theorem, k divides the order of G, which is p − 1, so p − 1 = km for some positive integer m. Then

Read more about this topic:  Proofs Of Fermat's Little Theorem

Famous quotes containing the words proof, group and/or theory:

    The source of Pyrrhonism comes from failing to distinguish between a demonstration, a proof and a probability. A demonstration supposes that the contradictory idea is impossible; a proof of fact is where all the reasons lead to belief, without there being any pretext for doubt; a probability is where the reasons for belief are stronger than those for doubting.
    Andrew Michael Ramsay (1686–1743)

    For me, as a beginning novelist, all other living writers form a control group for whom the world is a placebo.
    Nicholson Baker (b. 1957)

    Psychotherapy—The theory that the patient will probably get well anyway, and is certainly a damned ijjit.
    —H.L. (Henry Lewis)