Proof Using Group Theory
This proof requires the most basic elements of group theory.
The idea is to recognise that the set G = {1, 2, …, p − 1}, with the operation of multiplication (taken modulo p), forms a group. The only group axiom that requires some effort to verify is that each element of G is invertible. Taking this on faith for the moment, let us assume that a is in the range 1 ≤ a ≤ p − 1, that is, a is an element of G. Let k be the order of a, so that k is the smallest positive integer such that
By Lagrange's theorem, k divides the order of G, which is p − 1, so p − 1 = km for some positive integer m. Then
Read more about this topic: Proofs Of Fermat's Little Theorem
Famous quotes containing the words proof, group and/or theory:
“O, popular applause! what heart of man
Is proof against thy sweet, seducing charms?”
—William Cowper (17311800)
“Remember that the peer group is important to young adolescents, and theres nothing wrong with that. Parents are often just as important, however. Dont give up on the idea that you can make a difference.”
—The Lions Clubs International and the Quest Nation. The Surprising Years, I, ch.5 (1985)
“The theory seems to be that so long as a man is a failure he is one of Gods chillun, but that as soon as he has any luck he owes it to the Devil.”
—H.L. (Henry Lewis)