Proof By Infinite Descent - Number Theory

Number Theory

In the number theory of the twentieth century, the infinite descent method was taken up again, and pushed to a point where it connected with the main thrust of algebraic number theory and the study of L-functions. The structural result of Mordell, that the rational points on an elliptic curve E form a finitely-generated abelian group, used an infinite descent argument based on E/2E in Fermat's style.

To extend this to the case of an abelian variety A, André Weil had to make more explicit the way of quantifying the size of a solution, by means of a height function – a concept that became foundational. To show that A(Q)/2A(Q) is finite, which is certainly a necessary condition for the finite generation of the group A(Q) of rational points of A, one must do calculations in what later was recognised as Galois cohomology. In this way, abstractly-defined cohomology groups in the theory become identified with descents in the tradition of Fermat. The Mordell–Weil theorem was at the start of what later became a very extensive theory.

Read more about this topic:  Proof By Infinite Descent

Famous quotes containing the words number and/or theory:

    The growing good of the world is partly dependent on unhistoric acts; and that things are not so ill with you and me as they might have been, is half owing to the number who lived faithfully a hidden life, and rest in unvisited tombs.
    George Eliot [Mary Ann (or Marian)

    The things that will destroy America are prosperity-at-any- price, peace-at-any-price, safety-first instead of duty-first, the love of soft living, and the get-rich-quick theory of life.
    Theodore Roosevelt (1858–1919)