Projective Representation - Projective Representations of Lie Groups

Projective Representations of Lie Groups

Studying projective representations of Lie groups leads one to consider true representations of their central extensions (see Group extension#Lie groups). In many cases of interest it suffices to consider representations of covering groups; for a connected Lie group G, this amounts to studying the representations of the Lie algebra of G. Notable cases of covering groups giving interesting projective representations:

  • The special orthogonal group SO(n) is double covered by the Spin group Spin(n). In particular, the group SO(3) (the rotation group in 3 dimension) is double-covered by SU(2). This has important applications in quantum mechanics, as the study of representations of SU(2) leads naturally to the idea of spin.
  • The orthogonal group O(n) is double covered by the Pin groups Pin±(n).
  • The symplectic group Sp(2n) is double covered by the metaplectic group Mp(2n).

Read more about this topic:  Projective Representation

Famous quotes containing the words lie and/or groups:

    O mighty Caesar! Dost thou lie so low?
    Are all thy conquests, glories, triumphs, spoils,
    Shrunk to this little measure? Fare thee well.
    William Shakespeare (1564–1616)

    Under weak government, in a wide, thinly populated country, in the struggle against the raw natural environment and with the free play of economic forces, unified social groups become the transmitters of culture.
    Johan Huizinga (1872–1945)