Projective Module - Projective Resolutions

Projective Resolutions

Given a module, M, a projective resolution of M is an infinite exact sequence of modules

· · · → Pn → · · · → P2P1P0M → 0,

with all the Pi's projective. Every module possesses a projective resolution. In fact a free resolution (resolution by free modules) exists. The exact sequence of projective modules may sometimes be abbreviated to P(M) → M → 0 or PM → 0. A classic example of a projective resolution is given by the Koszul complex of a regular sequence, which is a free resolution of the ideal generated by the sequence.

The length of a finite resolution is the subscript n such that Pn is nonzero and Pi=0 for i greater than n. If M admits a finite projective resolution, the minimal length among all finite projective resolutions of M is called its projective dimension and denoted pd(M). If M does not admit a finite projective resolution, then by convention the projective dimension is said to be infinite. As an example, consider a module M such that pd(M) = 0. In this situation, the exactness of the sequence 0 → P0M → 0 indicates that the arrow in the center is an isomorphism, and hence M itself is projective.

Read more about this topic:  Projective Module

Famous quotes containing the word resolutions:

    No woman ever yet either reasoned or acted long together consequentially; but some little thing, some love, some resentment, some present momentary interest, some supposed slight, or some humour, always breaks in upon, and oversets their most prudent resolutions and schemes.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)