Projective Modules Over Commutative Rings
Projective modules over commutative rings have nice properties.
The localization of a projective module is a projective module over the localized ring. A projective module over a local ring is free. Thus a projective module is locally free.
The converse is true for finitely generated modules over Noetherian rings: a finitely generated module over a commutative noetherian ring is locally free if and only if it is projective.
However, there are examples of finitely generated modules over a non-Noetherian ring which are locally free and not projective. For instance, a Boolean ring has all of its localizations isomorphic to F2, the field of two elements, so any module over a Boolean ring is locally free, but there are some non-projective modules over Boolean rings. One example is R/I where R is a direct product of countably many copies of F2 and I is the direct sum of countably many copies of F2 inside of R. The R-module R/I is locally free since R is Boolean (and it's finitely generated as an R-module too, with a spanning set of size 1), but R/I is not projective because I is not a principal ideal. (If a quotient module R/I, for any commutative ring R and ideal I, is a projective R-module then I is principal.)
However, it is true that for finitely presented modules M over a commutative ring R (in particular if M is a finitely generated R-algebra and R is noetherian), the following are equivalent.
- M is flat.
- is projective.
- is free as -module for every maximal ideal of R.
- is free as -module for every prime ideal of R.
Moreover, if R is a noetherian integral domain, then, by Nakayama's lemma, these conditions are equivalent to
- The dimension of the –vector space is the same for all prime ideals of R.
That is to say, M has constant rank ("rank" is defined in the section below).
The fourth condition can be restated as:
- is a locally free sheaf on .
Let A be a commutative ring. If B is a (possibly non-commutative) A-algebra that is a finitely generated projective A-module containing A as a subring, then A is a direct factor of B.
Read more about this topic: Projective Module
Famous quotes containing the word rings:
“She has got rings on every finger,
Round one of them she have got three.
She have gold enough around her middle
To buy Northumberland that belongs to thee.”
—Unknown. Young Beichan (l. 6164)