Projective Line - Symmetry Group

Symmetry Group

Quite generally, the group of Möbius transformations with coefficients in K acts on the projective line P1(K). This group action is transitive, so that P1(K) is a homogeneous space for the group, often written PGL2(K) to emphasise its definition as a projective linear group. Transitivity says that any point Q may be transformed to any other point R by a Möbius transformation. The point at infinity on P1(K) is therefore an artifact of choice of coordinates: homogeneous coordinates

=

express a one-dimensional subspace by a single non-zero point (X,Y) lying in it, but the symmetries of the projective line can move the point ∞ = to any other, and it is in no way distinguished.

Much more is true, in that some transformation can take any given distinct points Qi for i = 1,2,3 to any other 3-tuple Ri of distinct points (triple transitivity). This amount of specification 'uses up' the three dimensions of PGL2(K); in other words, the group action is sharply 3-transitive. The computational aspect of this is the cross-ratio. Indeed, a generalized converse is true: a sharply 3-transitive group action is always (isomorphic to) a generalized form of a PGL2(K) action on a projective line, replacing "field" by "KT-field" (generalizing the inverse to a weaker kind of involution), and "PGL" by a corresponding generalization of projective linear maps.

Read more about this topic:  Projective Line

Famous quotes containing the words symmetry and/or group:

    What makes a regiment of soldiers a more noble object of view than the same mass of mob? Their arms, their dresses, their banners, and the art and artificial symmetry of their position and movements.
    George Gordon Noel Byron (1788–1824)

    My routines come out of total unhappiness. My audiences are my group therapy.
    Joan Rivers (b. 1935)