Description
Projective geometry is less restrictive than either Euclidean geometry or affine geometry. It is an intrinsically non-metrical geometry, whose facts are independent of any metric structure. Under the projective transformations, the incidence structure and the relation of projective harmonic conjugates are preserved. A projective range is the one-dimensional foundation. Projective geometry formalizes one of the central principles of perspective art: that parallel lines meet at infinity, and therefore are drawn that way. In essence, a projective geometry may be thought of as an extension of Euclidean geometry in which the "direction" of each line is subsumed within the line as an extra "point", and in which a "horizon" of directions corresponding to coplanar lines is regarded as a "line". Thus, two parallel lines meet on a horizon line in virtue of their possessing the same direction.
Idealized directions are referred to as points at infinity, while idealized horizons are referred to as lines at infinity. In turn, all these lines lie in the plane at infinity. However, infinity is a metric concept, so a purely projective geometry does not single out any points, lines or plane in this regard—those at infinity are treated just like any others.
Because a Euclidean geometry is contained within a Projective geometry, with Projective geometry having a simpler foundation, general results in Euclidean geometry may be arrived at in a more transparent fashion, where separate but similar theorems in Euclidean geometry may be handled collectively within the framework of projective geometry. For example, parallel and nonparallel lines need not be treated as separate cases – we single out some arbitrary projective plane as the ideal plane and locate it "at infinity" using homogeneous coordinates.
Additional properties of fundamental importance include Desargues' Theorem and the Theorem of Pappus. In projective spaces of dimension 3 or greater there is a construction that allows one to prove Desargues' Theorem. But for dimension 2, it must be separately postulated.
Under Desargues' Theorem, combined with the other axioms, it is possible to define the basic operations of arithmetic, geometrically. The resulting operations satisfy the axioms of a field—except that the commutativity of multiplication requires Pappus's hexagon theorem. As a result, the points of each line are in one to one correspondence with a given field, F, supplemented by an additional element, W, such that rW = W, −W = W, r+W = W, r/0 = W, r/W = 0, W−r = r−W = W. However, 0/0, W/W, W+W, W−W, 0W and W0 remain undefined.
Projective geometry also includes a full theory of conic sections, a subject already very well developed in Euclidean geometry. There are clear advantages in being able to think of a hyperbola and an ellipse as distinguished only by the way the hyperbola lies across the line at infinity; and that a parabola is distinguished only by being tangent to the same line. The whole family of circles can be seen as conics passing through two given points on the line at infinity—at the cost of requiring complex coordinates. Since coordinates are not "synthetic", one replaces them by fixing a line and two points on it, and considering the linear system of all conics passing through those points as the basic object of study. This approach proved very attractive to talented geometers, and the field was thoroughly worked over. An example of this approach is the multi-volume treatise by H. F. Baker.
There are many projective geometries, which may be divided into discrete and continuous: a discrete geometry comprises a set of points, which may or may not be finite in number, while a continuous geometry has infinitely many points with no gaps in between.
The only projective geometry of dimension 0 is a single point. A projective geometry of dimension 1 consists of a single line containing at least 3 points. The geometric construction of arithmetic operations cannot be carried out in either of these cases. For dimension 2, there is a rich structure in virtue of the absence of Desargues' Theorem.
According to Greenberg (1999) and others, the simplest 2-dimensional projective geometry is the Fano plane, which has 3 points on every line, with 7 points and lines in all arranged with the following schedule of collinearities:
with the affine coordinates A = {0,0}, B = {0,1}, C = {0,W} = {1,W}, D = {1,0}, E = {W,0} = {W,1}, F = {1,1}, G = {W, W}. The coordinates in a Desarguesian plane for the points designated to be the points at infinity (in this example: C, E and G) are generally not unambiguously defined.
In standard notation, a finite projective geometry is written PG(a,b) where:
- a is the projective (or geometric) dimension, and
- b is one less than the number of points on a line (called the order of the geometry).
Thus, the example having only 7 points is written PG(2,2).
The term "projective geometry" is sometimes used to indicate the generalised underlying abstract geometry, and sometimes to indicate a particular geometry of wide interest, such as the metric geometry of flat space which we analyse through the use of homogeneous coordinates, and in which Euclidean geometry may be embedded (hence its name, Extended Euclidean plane).
The fundamental property that singles out all projective geometries is the elliptic incidence property that any two distinct lines L and M in the projective plane intersect at exactly one point P. The special case in analytic geometry of parallel lines is subsumed in the smoother form of a line at infinity on which P lies. The line at infinity is thus a line like any other in the theory: it is in no way special or distinguished. (In the later spirit of the Erlangen programme one could point to the way the group of transformations can move any line to the line at infinity).
Given a line l and a point P not on the line, the elliptic parallel property contrasts with the Euclidean and hyperbolic parallel properties as follows:
Elliptic | : | any line through P meets l in just one point. |
---|---|---|
Euclidean | : | just one line through P may be found, which does not meet l. |
Hyperbolic | : | more than one line through P may be found, which do not meet l. |
The elliptic parallel property is the key idea which leads to the principle of projective duality, possibly the most important property which all projective geometries have in common.
Read more about this topic: Projective Geometry
Famous quotes containing the word description:
“Do not require a description of the countries towards which you sail. The description does not describe them to you, and to- morrow you arrive there, and know them by inhabiting them.”
—Ralph Waldo Emerson (18031882)
“To give an accurate description of what has never occurred is not merely the proper occupation of the historian, but the inalienable privilege of any man of parts and culture.”
—Oscar Wilde (18541900)
“Why does philosophy use concepts and why does faith use symbols if both try to express the same ultimate? The answer, of course, is that the relation to the ultimate is not the same in each case. The philosophical relation is in principle a detached description of the basic structure in which the ultimate manifests itself. The relation of faith is in principle an involved expression of concern about the meaning of the ultimate for the faithful.”
—Paul Tillich (18861965)