Given an arbitrary group G, there is a related profinite group G^, the profinite completion of G. It is defined as the inverse limit of the groups G/N, where N runs through the normal subgroups in G of finite index (these normal subgroups are partially ordered by inclusion, which translates into an inverse system of natural homomorphisms between the quotients). There is a natural homomorphism η : G → G^, and the image of G under this homomorphism is dense in G^. The homomorphism η is injective if and only if the group G is residually finite (i.e., where the intersection runs through all normal subgroups of finite index). The homomorphism η is characterized by the following universal property: given any profinite group H and any group homomorphism f : G → H, there exists a unique continuous group homomorphism g : G^ → H with f = gη.
Read more about this topic: Profinite Group