Definition
Formally, a profinite group is a Hausdorff, compact, and totally disconnected topological group: that is, a topological group that is also a Stone space. Equivalently, one can define a profinite group to be a topological group that is isomorphic to the inverse limit of an inverse system of discrete finite groups. In categorical terms, this is a special case of a (co)filtered limit construction.
Read more about this topic: Profinite Group
Famous quotes containing the word definition:
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)