Product Rule - Proof of The Product Rule

Proof of The Product Rule

A rigorous proof of the product rule can be given using the properties of limits and the definition of the derivative as a limit of Newton's difference quotient.

If

and ƒ and g are each differentiable at the fixed number x, then

Now the difference

is the area of the big rectangle minus the area of the small rectangle in the illustration.

The region between the smaller and larger rectangle can be split into two rectangles, the sum of whose areas is

Therefore the expression in (1) is equal to

Assuming that all limits used exist, (4) is equal to

 \left(\lim_{w\to x}f(x)\right) \left(\lim_{w\to x} {g(w) - g(x) \over w - x}\right)
+ \left(\lim_{w\to x} g(w)\right) \left(\lim_{w\to x} {f(w) - f(x) \over w - x} \right).
\qquad\qquad(5)

Now

This holds because f(x) remains constant as wx.

This holds because differentiable functions are continuous (g is assumed differentiable in the statement of the product rule).

Also:

and

because f and g are differentiable at x;

We conclude that the expression in (5) is equal to

Read more about this topic:  Product Rule

Famous quotes containing the words proof of the, proof of, proof, product and/or rule:

    Sculpture and painting are very justly called liberal arts; a lively and strong imagination, together with a just observation, being absolutely necessary to excel in either; which, in my opinion, is by no means the case of music, though called a liberal art, and now in Italy placed even above the other two—a proof of the decline of that country.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)

    There is no better proof of a man’s being truly good than his desiring to be constantly under the observation of good men.
    François, Duc De La Rochefoucauld (1613–1680)

    Ah! I have penetrated to those meadows on the morning of many a first spring day, jumping from hummock to hummock, from willow root to willow root, when the wild river valley and the woods were bathed in so pure and bright a light as would have waked the dead, if they had been slumbering in their graves, as some suppose. There needs no stronger proof of immortality. All things must live in such a light. O Death, where was thy sting? O Grave, where was thy victory, then?
    Henry David Thoreau (1817–1862)

    Much of our American progress has been the product of the individual who had an idea; pursued it; fashioned it; tenaciously clung to it against all odds; and then produced it, sold it, and profited from it.
    Hubert H. Humphrey (1911–1978)

    A right rule for a club would be, Admit no man whose presence excludes any one topic. It requires people who are not surprised and shocked, who do and let do, and let be, who sink trifles, and know solid values, and who take a great deal for granted.
    Ralph Waldo Emerson (1803–1882)