A Common Error
It is a common error, when studying calculus, to suppose that the derivative of (uv) equals (u ′)(v ′). Leibniz himself made this error initially; however, there are clear counterexamples. Consider a differentiable function ƒ(x) whose derivative is ƒ '(x). This function can also be written as ƒ(x) · 1, since 1 is the identity element for multiplication. If the above-mentioned misconception were true, (u′)(v′) would equal zero. This is true because the derivative of a constant (such as 1) is zero and the product of ƒ '(x) · 0 is also zero.
Read more about this topic: Product Rule
Famous quotes containing the words common and/or error:
“Poetry, at all times, exercises two distinct functions: it may reveal, it may unveil to every eye, the ideal aspects of common things ... or it may actually add to the number of motives poetic and uncommon in themselves, by the imaginative creation of things that are ideal from their very birth.”
—Walter Pater (18391894)
“Meanwhile, if the fear of falling into error sets up a mistrust of Science, which in the absence of such scruples gets on with the work itself, and actually cognizes something, it is hard to see why we should not turn round and mistrust this very mistrust.... What calls itself fear of error reveals itself rather as fear of the truth.”
—Georg Wilhelm Friedrich Hegel (17701831)