Product Rule - A Common Error

A Common Error

It is a common error, when studying calculus, to suppose that the derivative of (uv) equals (u ′)(v ′). Leibniz himself made this error initially; however, there are clear counterexamples. Consider a differentiable function ƒ(x) whose derivative is ƒ '(x). This function can also be written as ƒ(x) · 1, since 1 is the identity element for multiplication. If the above-mentioned misconception were true, (u′)(v′) would equal zero. This is true because the derivative of a constant (such as 1) is zero and the product of ƒ '(x) · 0 is also zero.

Read more about this topic:  Product Rule

Famous quotes containing the words common and/or error:

    There are ... two minimum conditions necessary and sufficient for the existence of a legal system. On the one hand those rules of behavior which are valid according to the system’s ultimate criteria of validity must be generally obeyed, and on the other hand, its rules of recognition specifying the criteria of legal validity and its rules of change and adjudication must be effectively accepted as common public standards of official behavior by its officials.
    —H.L.A. (Herbert Lionel Adolphus)

    There are strange flowers of reason to match each error of the senses.
    Louis Aragon (1897–1982)