Product Rule - A Common Error

A Common Error

It is a common error, when studying calculus, to suppose that the derivative of (uv) equals (u ′)(v ′). Leibniz himself made this error initially; however, there are clear counterexamples. Consider a differentiable function ƒ(x) whose derivative is ƒ '(x). This function can also be written as ƒ(x) · 1, since 1 is the identity element for multiplication. If the above-mentioned misconception were true, (u′)(v′) would equal zero. This is true because the derivative of a constant (such as 1) is zero and the product of ƒ '(x) · 0 is also zero.

Read more about this topic:  Product Rule

Famous quotes containing the words common and/or error:

    But genius is religious. It is a larger imbibing of the common heart.
    Ralph Waldo Emerson (1803–1882)

    When we do not know the truth of a thing, it is of advantage that there should exist a common error which determines the mind of man.... For the chief malady of man is restless curiosity about things which he cannot understand; and it is not so bad for him to be in error as to be curious to no purpose.
    Blaise Pascal (1623–1662)