Definition
Let be a category with some objects and . An object is the product of and, denoted, iff it satisfies this universal property:
- there exist morphisms, called the canonical projections or projection morphisms, such that for every object and pair of morphisms there exists a unique morphism such that the following diagram commutes:
The unique morphism is called the product of morphisms and and is denoted .
Above we defined the binary product. Instead of two objects we can take an arbitrary family of objects indexed by some set . Then we obtain the definition of a product.
An object is the product of a family of objects iff there exist morphisms, such that for every object and a -indexed family of morphisms there exists a unique morphism such that the following diagrams commute for all :
The product is denoted ; if, then denoted and the product of morphisms is denoted .
Read more about this topic: Product (category Theory)
Famous quotes containing the word definition:
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)
“It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possessafter many mysterieswhat one loves.”
—François, Duc De La Rochefoucauld (16131680)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)