Probable Prime

Probable Prime

In number theory, a probable prime (PRP) is an integer that satisfies a specific condition also satisfied by all prime numbers. Different types of probable primes have different specific conditions. While there may be probable primes that are composite (called pseudoprimes), the condition is generally chosen in order to make such exceptions rare.

Fermat's test for compositeness, which is based on Fermat's little theorem, works as follows: given an integer n, choose some integer a coprime to n and calculate an − 1 modulo n. If the result is different from 1, n is composite. If it is 1, n may or may not be prime; n is then called a (weak) probable prime to base a.

Read more about Probable Prime:  Properties, Variations

Famous quotes containing the words probable and/or prime:

    It is probable that the principal credit of miracles, visions, enchantments, and such extraordinary occurrences comes from the power of imagination, acting principally upon the minds of the common people, which are softer.
    Michel de Montaigne (1533–1592)

    If Montaigne is a man in the prime of life sitting in his study on a warm morning and putting down the sum of his experience in his rich, sinewy prose, then Pascal is that same man lying awake in the small hours of the night when death seems very close and every thought is heightened by the apprehension that it may be his last.
    Cyril Connolly (1903–1974)