Probability Vector - Some Properties of Dimensional Probability Vectors

Some Properties of Dimensional Probability Vectors

Probability vectors of dimension are contained within an dimensional unit hyperplane.
The mean of a probability vector is .
The shortest probability vector has the value as each component of the vector, and has a length of .
The longest probability vector has the value 1 in a single component and 0 in all others, and has a length of 1.
The shortest vector corresponds to maximum uncertainty, the longest to maximum certainty.
No two probability vectors in the dimensional unit hypersphere are collinear unless they are identical.
The length of a probability vector is equal to ; where is the variance of the elements of the probability vector.

Read more about this topic:  Probability Vector

Famous quotes containing the words properties, dimensional and/or probability:

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)

    I don’t see black people as victims even though we are exploited. Victims are flat, one- dimensional characters, someone rolled over by a steamroller so you have a cardboard person. We are far more resilient and more rounded than that. I will go on showing there’s more to us than our being victimized. Victims are dead.
    Kristin Hunter (b. 1931)

    The source of Pyrrhonism comes from failing to distinguish between a demonstration, a proof and a probability. A demonstration supposes that the contradictory idea is impossible; a proof of fact is where all the reasons lead to belief, without there being any pretext for doubt; a probability is where the reasons for belief are stronger than those for doubting.
    Andrew Michael Ramsay (1686–1743)