A discrete probability distribution shall be understood as a probability distribution characterized by a probability mass function. Thus, the distribution of a random variable X is discrete, and X is then called a discrete random variable, if
as u runs through the set of all possible values of X. It follows that such a random variable can assume only a finite or countably infinite number of values.
In cases more frequently considered, this set of possible values is a topologically discrete set in the sense that all its points are isolated points. But there are discrete random variables for which this countable set is dense on the real line (for example, a distribution over rational numbers).
Among the most well-known discrete probability distributions that are used for statistical modeling are the Poisson distribution, the Bernoulli distribution, the binomial distribution, the geometric distribution, and the negative binomial distribution. In addition, the discrete uniform distribution is commonly used in computer programs that make equal-probability random selections between a number of choices.
Read more about this topic: Probability Distribution
Famous quotes containing the words discrete, probability and/or distribution:
“We have good reason to believe that memories of early childhood do not persist in consciousness because of the absence or fragmentary character of language covering this period. Words serve as fixatives for mental images. . . . Even at the end of the second year of life when word tags exist for a number of objects in the childs life, these words are discrete and do not yet bind together the parts of an experience or organize them in a way that can produce a coherent memory.”
—Selma H. Fraiberg (20th century)
“The source of Pyrrhonism comes from failing to distinguish between a demonstration, a proof and a probability. A demonstration supposes that the contradictory idea is impossible; a proof of fact is where all the reasons lead to belief, without there being any pretext for doubt; a probability is where the reasons for belief are stronger than those for doubting.”
—Andrew Michael Ramsay (16861743)
“The man who pretends that the distribution of income in this country reflects the distribution of ability or character is an ignoramus. The man who says that it could by any possible political device be made to do so is an unpractical visionary. But the man who says that it ought to do so is something worse than an ignoramous and more disastrous than a visionary: he is, in the profoundest Scriptural sense of the word, a fool.”
—George Bernard Shaw (18561950)