A continuous probability distribution is a probability distribution that has a probability density function. Mathematicians also call such a distribution absolutely continuous, since its cumulative distribution function is absolutely continuous with respect to the Lebesgue measure λ. If the distribution of X is continuous, then X is called a continuous random variable. There are many examples of continuous probability distributions: normal, uniform, chi-squared, and others.
Intuitively, a continuous random variable is the one which can take a continuous range of values — as opposed to a discrete distribution, where the set of possible values for the random variable is at most countable. While for a discrete distribution an event with probability zero is impossible (e.g. rolling 3½ on a standard die is impossible, and has probability zero), this is not so in the case of a continuous random variable. For example, if one measures the width of an oak leaf, the result of 3½ cm is possible, however it has probability zero because there are uncountably many other potential values even between 3 cm and 4 cm. Each of these individual outcomes has probability zero, yet the probability that the outcome will fall into the interval (3 cm, 4 cm) is nonzero. This apparent paradox is resolved by the fact that the probability that X attains some value within an infinite set, such as an interval, cannot be found by naively adding the probabilities for individual values. Formally, each value has an infinitesimally small probability, which statistically is equivalent to zero.
Formally, if X is a continuous random variable, then it has a probability density function ƒ(x), and therefore its probability of falling into a given interval, say is given by the integral
In particular, the probability for X to take any single value a (that is a ≤ X ≤ a) is zero, because an integral with coinciding upper and lower limits is always equal to zero.
The definition states that a continuous probability distribution must possess a density, or equivalently, its cumulative distribution function be absolutely continuous. This requirement is stronger than simple continuity of the cdf, and there is a special class of distributions, singular distributions, which are neither continuous nor discrete nor their mixture. An example is given by the Cantor distribution. Such singular distributions however are never encountered in practice.
Note on terminology: some authors use the term "continuous distribution" to denote the distribution with continuous cdf. Thus, their definition includes both the (absolutely) continuous and singular distributions.
By one convention, a probability distribution is called continuous if its cumulative distribution function is continuous and, therefore, the probability measure of singletons for all .
Another convention reserves the term continuous probability distribution for absolutely continuous distributions. These distributions can be characterized by a probability density function: a non-negative Lebesgue integrable function defined on the real numbers such that
Discrete distributions and some continuous distributions (like the Cantor distribution) do not admit such a density.
Read more about this topic: Probability Distribution
Famous quotes containing the words continuous, probability and/or distribution:
“The habit of common and continuous speech is a symptom of mental deficiency. It proceeds from not knowing what is going on in other peoples minds.”
—Walter Bagehot (18261877)
“Legends of prediction are common throughout the whole Household of Man. Gods speak, spirits speak, computers speak. Oracular ambiguity or statistical probability provides loopholes, and discrepancies are expunged by Faith.”
—Ursula K. Le Guin (b. 1929)
“Classical and romantic: private language of a family quarrel, a dead dispute over the distribution of emphasis between man and nature.”
—Cyril Connolly (19031974)