Probability Density Function - Link Between Discrete and Continuous Distributions

Link Between Discrete and Continuous Distributions

It is possible to represent certain discrete random variables as well as random variables involving both a continuous and a discrete part with a generalized probability density function, by using the Dirac delta function. For example, let us consider a binary discrete random variable taking −1 or 1 for values, with probability ½ each.

The density of probability associated with this variable is:

More generally, if a discrete variable can take n different values among real numbers, then the associated probability density function is:

where x1, …, xn are the discrete values accessible to the variable and p1, …, pn are the probabilities associated with these values.

This substantially unifies the treatment of discrete and continuous probability distributions. For instance, the above expression allows for determining statistical characteristics of such a discrete variable (such as its mean, its variance and its kurtosis), starting from the formulas given for a continuous distribution of the probability.

Read more about this topic:  Probability Density Function

Famous quotes containing the words link between, link, discrete and/or continuous:

    The lifelong process of caregiving, is the ultimate link between caregivers of all ages. You and I are not just in a phase we will outgrow. This is life—birth, death, and everything in between.... The care continuum is the cycle of life turning full circle in each of our lives. And what we learn when we spoon-feed our babies will echo in our ears as we feed our parents. The point is not to be done. The point is to be ready to do again.
    Paula C. Lowe (20th century)

    All successful men have agreed in one thing,—they were causationists. They believed that things went not by luck, but by law; that there was not a weak or a cracked link in the chain that joins the first and last of things.
    Ralph Waldo Emerson (1803–1882)

    We have good reason to believe that memories of early childhood do not persist in consciousness because of the absence or fragmentary character of language covering this period. Words serve as fixatives for mental images. . . . Even at the end of the second year of life when word tags exist for a number of objects in the child’s life, these words are discrete and do not yet bind together the parts of an experience or organize them in a way that can produce a coherent memory.
    Selma H. Fraiberg (20th century)

    If an irreducible distinction between theatre and cinema does exist, it may be this: Theatre is confined to a logical or continuous use of space. Cinema ... has access to an alogical or discontinuous use of space.
    Susan Sontag (b. 1933)