In Bayesian probability theory, the principle of maximum entropy is a prime doctrine. It states that, subject to precisely stated prior data, which must be a proposition that expresses testable information, the probability distribution which best represents the current state of knowledge is the one with largest information-theoretical entropy.
Let some precisely stated prior data or testable information about a probability distribution function be given. Consider the set of all trial probability distributions that encode the prior data. Of those, the one that maximizes the information entropy is the proper probability distribution under the given prior data.
Read more about Principle Of Maximum Entropy: History, Overview, Testable Information, Justifications For The Principle of Maximum Entropy
Famous quotes containing the words principle of, principle, maximum and/or entropy:
“From the age of fifteen, dogma has been the fundamental principle of my religion: I know no other religion; I cannot enter into the idea of any other sort of religion; religion, as a mere sentiment, is to me a dream and a mockery.”
—Cardinal John Henry Newman (18011890)
“The principle of subordination is the great bond of union and harmony through the universe.”
—Catherine E. Beecher (18001878)
“Probably the only place where a man can feel really secure is in a maximum security prison, except for the imminent threat of release.”
—Germaine Greer (b. 1939)
“Just as the constant increase of entropy is the basic law of the universe, so it is the basic law of life to be ever more highly structured and to struggle against entropy.”
—Václav Havel (b. 1936)