Principle of Bivalence - Classical Logic

Classical Logic

The intended semantics of classical logic is bivalent, but this is not true of every semantics for classical logic. In Boolean-valued semantics (for classical propositional logic), the truth values are the elements of an arbitrary Boolean algebra, "true" corresponds to the maximal element of the algebra, and "false" corresponds to the minimal element. Intermediate elements of the algebra correspond to truth values other than "true" and "false". The principle of bivalence holds only when the Boolean algebra is taken to be the two-element algebra, which has no intermediate elements.

Assign Boolean semantics to classical predicate calculus requires that the model be a complete Boolean algebra because the universal quantifier maps to the infimum operation, and the existential quantifier maps to the supremum; this is called a Boolean-valued model. All finite Boolean algebras are complete.

Read more about this topic:  Principle Of Bivalence

Famous quotes containing the words classical and/or logic:

    Several classical sayings that one likes to repeat had quite a different meaning from the ones later times attributed to them.
    Johann Wolfgang Von Goethe (1749–1832)

    ...some sort of false logic has crept into our schools, for the people whom I have seen doing housework or cooking know nothing of botany or chemistry, and the people who know botany and chemistry do not cook or sweep. The conclusion seems to be, if one knows chemistry she must not cook or do housework.
    Ellen Henrietta Swallow Richards (1842–1911)