Definition
If n is a positive integer, the integers between 1 and n−1 which are coprime to n (or equivalently, the congruence classes coprime to n) form a group with multiplication modulo n as the operation; it is denoted by Zn× and is called the group of units modulo n or the group of primitive classes modulo n. As explained in the article multiplicative group of integers modulo n, this group is cyclic if and only if n is equal to 2, 4, pk, or 2 pk where pk is a power of an odd prime number. A generator of this cyclic group is called a primitive root modulo n, or a primitive element of Zn×.
The order of (i.e. the number of elements in) Zn× is given by Euler's totient function Euler's theorem says that aφ(n) ≡ 1 (mod n) for every a coprime to n; the lowest power of a which is congruent to 1 modulo n is called the multiplicative order of a modulo n. In particular, for a to be a primitive root modulo n, φ(n) has to be the smallest power of a which is congruent to 1 modulo n.
Read more about this topic: Primitive Root Modulo n
Famous quotes containing the word definition:
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)