Statement of The Theorem
Let π(x) be the prime-counting function that gives the number of primes less than or equal to x, for any real number x. For example, π(10) = 4 because there are four prime numbers (2, 3, 5 and 7) less than or equal to 10. The prime number theorem then states that the limit of the quotient of the two functions π(x) and x / ln(x) as x approaches infinity is 1, which is expressed by the formula
known as the asymptotic law of distribution of prime numbers. Using asymptotic notation this result can be restated as
This notation (and the theorem) does not say anything about the limit of the difference of the two functions as x approaches infinity. (Indeed, the behavior of this difference is very complicated and related to the Riemann hypothesis.) Instead, the theorem states that x/ln(x) approximates π(x) in the sense that the relative error of this approximation approaches 0 as x approaches infinity.
The prime number theorem is equivalent to the statement that the nth prime number pn is approximately equal to n ln(n), again with the relative error of this approximation approaching 0 as n approaches infinity.
Read more about this topic: Prime Number Theorem
Famous quotes containing the words statement of, statement and/or theorem:
“The honor my country shall never be stained by an apology from me for the statement of truth and the performance of duty; nor can I give any explanation of my official acts except such as is due to integrity and justice and consistent with the principles on which our institutions have been framed.”
—Andrew Jackson (17671845)
“A sentence is made up of words, a statement is made in words.... Statements are made, words or sentences are used.”
—J.L. (John Langshaw)
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)