Statement of The Theorem
Let π(x) be the prime-counting function that gives the number of primes less than or equal to x, for any real number x. For example, π(10) = 4 because there are four prime numbers (2, 3, 5 and 7) less than or equal to 10. The prime number theorem then states that the limit of the quotient of the two functions π(x) and x / ln(x) as x approaches infinity is 1, which is expressed by the formula
known as the asymptotic law of distribution of prime numbers. Using asymptotic notation this result can be restated as
This notation (and the theorem) does not say anything about the limit of the difference of the two functions as x approaches infinity. (Indeed, the behavior of this difference is very complicated and related to the Riemann hypothesis.) Instead, the theorem states that x/ln(x) approximates π(x) in the sense that the relative error of this approximation approaches 0 as x approaches infinity.
The prime number theorem is equivalent to the statement that the nth prime number pn is approximately equal to n ln(n), again with the relative error of this approximation approaching 0 as n approaches infinity.
Read more about this topic: Prime Number Theorem
Famous quotes containing the words statement of, statement and/or theorem:
“Eloquence must be grounded on the plainest narrative. Afterwards, it may warm itself until it exhales symbols of every kind and color, speaks only through the most poetic forms; but first and last, it must still be at bottom a biblical statement of fact.”
—Ralph Waldo Emerson (18031882)
“The most distinct and beautiful statement of any truth must take at last the mathematical form.”
—Henry David Thoreau (18171862)
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)