Prime Number Theorem - Prime Number Theorem For Arithmetic Progressions

Prime Number Theorem For Arithmetic Progressions

Let denote the number of primes in the arithmetic progression a, a + n, a + 2n, a + 3n, … less than x. Dirichlet and Legendre conjectured, and Vallée-Poussin proved, that, if a and n are coprime, then


\pi_{n,a}(x) \sim \frac{1}{\phi(n)}\mathrm{Li}(x),

where φ(·) is the Euler's totient function. In other words, the primes are distributed evenly among the residue classes modulo n with gcd(a, n) = 1. This can be proved using similar methods used by Newman for his proof of the prime number theorem.

The Siegel–Walfisz theorem gives a good estimate for the distribution of primes in residue classes.

Read more about this topic:  Prime Number Theorem

Famous quotes containing the words prime, number, theorem and/or arithmetic:

    My prime of youth is but a frost of cares,
    My feast of joy is but a dish of pain,
    My crop of corn is but a field of tares,
    And all my good is but vain hope of gain:
    The day is past, and yet I saw no sun,
    And now I live, and now my life is done.
    Chidiock Tichborne (1558–1586)

    He is the richest man who knows how to draw a benefit from the labors of the greatest number of men, of men in distant countries, and in past times.
    Ralph Waldo Emerson (1803–1882)

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)

    Under the dominion of an idea, which possesses the minds of multitudes, as civil freedom, or the religious sentiment, the power of persons are no longer subjects of calculation. A nation of men unanimously bent on freedom, or conquest, can easily confound the arithmetic of statists, and achieve extravagant actions, out of all proportion to their means; as, the Greeks, the Saracens, the Swiss, the Americans, and the French have done.
    Ralph Waldo Emerson (1803–1882)