Prime Number Theorem For Arithmetic Progressions
Let denote the number of primes in the arithmetic progression a, a + n, a + 2n, a + 3n, … less than x. Dirichlet and Legendre conjectured, and Vallée-Poussin proved, that, if a and n are coprime, then
where φ(·) is the Euler's totient function. In other words, the primes are distributed evenly among the residue classes modulo n with gcd(a, n) = 1. This can be proved using similar methods used by Newman for his proof of the prime number theorem.
The Siegel–Walfisz theorem gives a good estimate for the distribution of primes in residue classes.
Read more about this topic: Prime Number Theorem
Famous quotes containing the words prime, number, theorem and/or arithmetic:
“... unless the actor is able to discourse most eloquently without opening his lips, he lacks the prime essential of a finished artist.”
—Julia Marlowe (18701950)
“Strange goings on! Jones did it slowly, deliberately, in the bathroom, with a knife, at midnight. What he did was butter a piece of toast. We are too familiar with the language of action to notice at first an anomaly: the it of Jones did it slowly, deliberately,... seems to refer to some entity, presumably an action, that is then characterized in a number of ways.”
—Donald Davidson (b. 1917)
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)
“O! O! another stroke! that makes the third.
He stabs me to the heart against my wish.
If that be so, thy state of health is poor;
But thine arithmetic is quite correct.”
—A.E. (Alfred Edward)