Elementary Proofs
In the first half of the twentieth century, some mathematicians (notably G. H. Hardy) believed that there exists a hierarchy of proof methods in mathematics depending on what sorts of numbers (integers, reals, complex) a proof requires, and that the prime number theorem (PNT) is a "deep" theorem by virtue of requiring complex analysis. This belief was somewhat shaken by a proof of the PNT based on Wiener's tauberian theorem, though this could be set aside if Wiener's theorem were deemed to have a "depth" equivalent to that of complex variable methods. There is no rigorous and widely accepted definition of the notion of elementary proof in number theory. One definition is "a proof that can be carried out in first order Peano arithmetic." There are number-theoretic statements (for example, the Paris–Harrington theorem) provable using second order but not first order methods, but such theorems are rare to date.
In March 1948, Atle Selberg established, by elementary means, the asymptotic formula
where
for primes . By July of that year, Selberg and Paul Erdős had each obtained elementary proofs of the PNT, both using Selberg's asymptotic formula as a starting point. These proofs effectively laid to rest the notion that the PNT was "deep," and showed that technically "elementary" methods (in other words Peano arithmetic) were more powerful than had been believed to be the case. In 1994, Charalambos Cornaros and Costas Dimitracopoulos proved the PNT using only, a formal system far weaker than Peano arithmetic. On the history of the elementary proofs of the PNT, including the Erdős–Selberg priority dispute, see Dorian Goldfeld.
Read more about this topic: Prime Number Theorem
Famous quotes containing the words elementary and/or proofs:
“Listen. We converse as we liveby repeating, by combining and recombining a few elements over and over again just as nature does when of elementary particles it builds a world.”
—William Gass (b. 1924)
“Trifles light as air
Are to the jealous confirmation strong
As proofs of holy writ.”
—William Shakespeare (15641616)