Prime Number Theorem - Analogue For Irreducible Polynomials Over A Finite Field

Analogue For Irreducible Polynomials Over A Finite Field

There is an analogue of the prime number theorem that describes the "distribution" of irreducible polynomials over a finite field; the form it takes is strikingly similar to the case of the classical prime number theorem.

To state it precisely, let F = GF(q) be the finite field with q elements, for some fixed q, and let Nn be the number of monic irreducible polynomials over F whose degree is equal to n. That is, we are looking at polynomials with coefficients chosen from F, which cannot be written as products of polynomials of smaller degree. In this setting, these polynomials play the role of the prime numbers, since all other monic polynomials are built up of products of them. One can then prove that

If we make the substitution x = qn, then the right hand side is just

which makes the analogy clearer. Since there are precisely qn monic polynomials of degree n (including the reducible ones), this can be rephrased as follows: if a monic polynomial of degree n is selected randomly, then the probability of it being irreducible is about 1/n.

One can even prove an analogue of the Riemann hypothesis, namely that

The proofs of these statements are far simpler than in the classical case. It involves a short combinatorial argument, summarised as follows. Every element of the degree n extension of F is a root of some irreducible polynomial whose degree d divides n; by counting these roots in two different ways one establishes that

where the sum is over all divisors d of n. Möbius inversion then yields

where μ(k) is the Möbius function. (This formula was known to Gauss.) The main term occurs for d = n, and it is not difficult to bound the remaining terms. The "Riemann hypothesis" statement depends on the fact that the largest proper divisor of n can be no larger than n/2.

Read more about this topic:  Prime Number Theorem

Famous quotes containing the words analogue, irreducible, finite and/or field:

    Human language appears to be a unique phenomenon, without significant analogue in the animal world.
    Noam Chomsky (b. 1928)

    If an irreducible distinction between theatre and cinema does exist, it may be this: Theatre is confined to a logical or continuous use of space. Cinema ... has access to an alogical or discontinuous use of space.
    Susan Sontag (b. 1933)

    All finite things reveal infinitude:
    Theodore Roethke (1908–1963)

    But the old world was restored and we returned
    To the dreary field and workshop, and the immemorial feud

    Of rich and poor. Our victory was our defeat.
    Sir Herbert Read (1893–1968)