Complexity
In computational complexity theory, the formal language corresponding to the prime numbers is denoted as PRIMES. It is easy to show that PRIMES is in Co-NP: its complement COMPOSITES is in NP because one can decide compositeness by nondeterministically guessing a factor.
In 1975, Vaughan Pratt showed that there existed a certificate for primality that was checkable in polynomial time, and thus that PRIMES was in NP, and therefore in NP ∩ coNP. See primality certificate for details.
The subsequent discovery of the Solovay–Strassen and Miller–Rabin algorithms put PRIMES in coRP. In 1992, the Adleman–Huang algorithm reduced the complexity to ZPP = RP ∩ coRP, which superseded Pratt's result.
The cyclotomy test of Adleman, Pomerance, and Rumely from 1983 put PRIMES in QP (quasi-polynomial time), which is not known to be comparable with the classes mentioned above.
Because of its tractability in practice, polynomial-time algorithms assuming the Riemann hypothesis, and other similar evidence, it was long suspected but not proven that primality could be solved in polynomial time. The existence of the AKS primality test finally settled this long-standing question and placed PRIMES in P. However, PRIMES is not known to be P-complete, and it is not known whether it lies in classes lying inside P such as NC or L.
Read more about this topic: Primality Test
Famous quotes containing the word complexity:
“The price we pay for the complexity of life is too high. When you think of all the effort you have to put intelephonic, technological and relationalto alter even the slightest bit of behaviour in this strange world we call social life, you are left pining for the straightforwardness of primitive peoples and their physical work.”
—Jean Baudrillard (b. 1929)
“It is not only their own need to mother that takes some women by surprise; there is also the shock of discovering the complexity of alternative child-care arrangements that have been made to sound so simple. Those for whom the intended solution is equal parenting have found that some parents are more equal than others.”
—Elaine Heffner (20th century)
“In times like ours, where the growing complexity of life leaves us barely the time to read the newspapers, where the map of Europe has endured profound rearrangements and is perhaps on the brink of enduring yet others, where so many threatening and new problems appear everywhere, you will admit it may be demanded of a writer that he be more than a fine wit who makes us forget in idle and byzantine discussions on the merits of pure form ...”
—Marcel Proust (18711922)