Pressure Gradient - Mathematical Description

Mathematical Description

Assuming that the pressure p is an intensive quantity, i.e., a single-valued, continuous and differentiable function of three-dimensional space (often called a scalar field), i.e., that

where x, y and z are the coordinates of the location of interest, then the pressure gradient is the vector quantity defined as


\nabla p = \begin{pmatrix}
{\frac{\partial p}{\partial x}},
{\frac{\partial p}{\partial y}},
{\frac{\partial p}{\partial z}}
\end{pmatrix}

Read more about this topic:  Pressure Gradient

Famous quotes containing the words mathematical and/or description:

    As we speak of poetical beauty, so ought we to speak of mathematical beauty and medical beauty. But we do not do so; and that reason is that we know well what is the object of mathematics, and that it consists in proofs, and what is the object of medicine, and that it consists in healing. But we do not know in what grace consists, which is the object of poetry.
    Blaise Pascal (1623–1662)

    I was here first introduced to Joe.... He was a good-looking Indian, twenty-four years old, apparently of unmixed blood, short and stout, with a broad face and reddish complexion, and eyes, methinks, narrower and more turned up at the outer corners than ours, answering to the description of his race. Besides his underclothing, he wore a red flannel shirt, woolen pants, and a black Kossuth hat, the ordinary dress of the lumberman, and, to a considerable extent, of the Penobscot Indian.
    Henry David Thoreau (1817–1862)