Pressure drop is defined as the difference in pressure between two points of a fluid carrying network. Pressure drop occurs with frictional forces, caused by the resistance to flow, on a fluid as it flows through the tube. The main determinants of resistance to fluid flow are fluid velocity through the pipe and fluid viscosity. Pressure drop increases proportional to the frictional shear forces within the piping network. A piping network containing a high relative roughness rating as well as many pipe fittings and joints, tube convergence, divergence, turns, surface roughness and other physical properties will affect the pressure drop. High flow velocities and / or high fluid viscosities result in a larger pressure drop across a section of pipe or a valve or elbow. Low velocity will result in lower or no pressure drop.
Read more about Pressure Drop: Calculation, See Also
Famous quotes containing the words pressure and/or drop:
“The universal social pressure upon women to be all alike, and do all the same things, and to be content with identical restrictions, has resulted not only in terrible suffering in the lives of exceptional women, but also in the loss of unmeasured feminine values in special gifts. The Drama of the Woman of Genius has too often been a tragedy of misshapen and perverted power.”
—Anna Garlin Spencer (18511931)
“I never meant to deny the moral impact of art which is certainly inherent in every genuine work of art. What I do deny and am prepared to fight to the last drop of my ink is the deliberate moralizing which to me kills every vestige of art in a work however skillfully written.”
—Vladimir Nabokov (18991977)