Geometric Group Theory
A presentation of a group determines a geometry, in the sense of geometric group theory: one has the Cayley graph, which has a metric, called the word metric. These are also two resulting orders, the weak order and the Bruhat order, and corresponding Hasse diagrams. An important example is in the Coxeter groups.
Further, some properties of this graph (the coarse geometry) are intrinsic, meaning independent of choice of generators.
Read more about this topic: Presentation Of A Group
Famous quotes containing the words geometric, group and/or theory:
“In mathematics he was greater
Than Tycho Brahe, or Erra Pater:
For he, by geometric scale,
Could take the size of pots of ale;
Resolve, by sines and tangents straight,
If bread and butter wanted weight;
And wisely tell what hour o th day
The clock doth strike, by algebra.”
—Samuel Butler (16121680)
“Instead of seeing society as a collection of clearly defined interest groups, society must be reconceptualized as a complex network of groups of interacting individuals whose membership and communication patterns are seldom confined to one such group alone.”
—Diana Crane (b. 1933)
“There is in him, hidden deep-down, a great instinctive artist, and hence the makings of an aristocrat. In his muddled way, held back by the manacles of his race and time, and his steps made uncertain by a guiding theory which too often eludes his own comprehension, he yet manages to produce works of unquestionable beauty and authority, and to interpret life in a manner that is poignant and illuminating.”
—H.L. (Henry Lewis)