Geometric Group Theory
A presentation of a group determines a geometry, in the sense of geometric group theory: one has the Cayley graph, which has a metric, called the word metric. These are also two resulting orders, the weak order and the Bruhat order, and corresponding Hasse diagrams. An important example is in the Coxeter groups.
Further, some properties of this graph (the coarse geometry) are intrinsic, meaning independent of choice of generators.
Read more about this topic: Presentation Of A Group
Famous quotes containing the words geometric, group and/or theory:
“New York ... is a city of geometric heights, a petrified desert of grids and lattices, an inferno of greenish abstraction under a flat sky, a real Metropolis from which man is absent by his very accumulation.”
—Roland Barthes (19151980)
“A little group of wilful men reflecting no opinion but their own have rendered the great Government of the United States helpless and contemptible.”
—Woodrow Wilson (18561924)
“A theory of the middle class: that it is not to be determined by its financial situation but rather by its relation to government. That is, one could shade down from an actual ruling or governing class to a class hopelessly out of relation to government, thinking of govt as beyond its control, of itself as wholly controlled by govt. Somewhere in between and in gradations is the group that has the sense that govt exists for it, and shapes its consciousness accordingly.”
—Lionel Trilling (19051975)