Background
A free group on a set S is a group where each element can be uniquely described as a finite length product of the form:
where the si are elements of S, adjacent si are distinct, and ai are non-zero integers (but n may be zero). In less formal terms, the group consists of words in the generators and their inverses, subject only to canceling a generator with its inverse.
If G is any group, and S is a generating subset of G, then every element of G is also of the above form; but in general, these products will not uniquely describe an element of G.
For example, the dihedral group D of order sixteen can be generated by a rotation, r, of order 8; and a flip, f, of order 2; and certainly any element of D is a product of r 's and f 's.
However, we have, for example, r f r = f, r 7 = r −1, etc.; so such products are not unique in D. Each such product equivalence can be expressed as an equality to the identity; such as
- r f r f = 1
- r 8 = 1
- f 2 = 1.
Informally, we can consider these products on the left hand side as being elements of the free group F = <r,f>, and can consider the subgroup R of F which is generated by these strings; each of which would also be equivalent to 1 when considered as products in D.
If we then let N be the subgroup of F generated by all conjugates x −1 R x of R, then it is straightforward to show that every element of N is a finite product x1 −1 r1 x1 . . . xm −1 rm xm of members of such conjugates. It follows that N is a normal subgroup of F; and that each element of N, when considered as a product in D, will also evaluate to 1. Thus D is isomorphic to the quotient group F /N. We then say that D has presentation
Read more about this topic: Presentation Of A Group
Famous quotes containing the word background:
“... every experience in life enriches ones background and should teach valuable lessons.”
—Mary Barnett Gilson (1877?)
“In the true sense ones native land, with its background of tradition, early impressions, reminiscences and other things dear to one, is not enough to make sensitive human beings feel at home.”
—Emma Goldman (18691940)