Power Set - Representing Subsets As Functions

Representing Subsets As Functions

In set theory, XY is the set of all functions from Y to X. As "2" can be defined as {0,1} (see natural number), 2S (i.e., {0,1}S) is the set of all functions from S to {0,1}. By identifying a function in 2S with the corresponding preimage of 1, we see that there is a bijection between 2S and, where each function is the characteristic function of the subset in with which it is identified. Hence 2S and could be considered identical set-theoretically. (Thus there are two distinct notational motivations for denoting the power set by 2S: the fact that this function-representation of subsets makes it a special case of the XY notation and the property, mentioned above, that |2S| = 2|S|.)

This notion can be applied to the example above in which to see the isomorphism with the binary numbers from 0 to 2n−1 with n being the number of elements in the set. In S, a 1 in the position corresponding to the location in the set indicates the presence of the element. So {x, y} = 110.

For the whole power set of S we get:

  • { } = 000 (Binary) = 0 (Decimal)
  • {x} = 100 = 4
  • {y} = 010 = 2
  • {z} = 001 = 1
  • {x, y} = 110 = 6
  • {x, z} = 101 = 5
  • {y, z} = 011 = 3
  • {x, y, z} = 111 = 7

Read more about this topic:  Power Set

Famous quotes containing the words representing and/or functions:

    ... today we round out the first century of a professed republic,—with woman figuratively representing freedom—and yet all free, save woman.
    Phoebe W. Couzins (1845–1913)

    Mark the babe
    Not long accustomed to this breathing world;
    One that hath barely learned to shape a smile,
    Though yet irrational of soul, to grasp
    With tiny finger—to let fall a tear;
    And, as the heavy cloud of sleep dissolves,
    To stretch his limbs, bemocking, as might seem,
    The outward functions of intelligent man.
    William Wordsworth (1770–1850)