Power Rule

In mathematics, the power rule is one of the most important differentiation rules in calculus. Since differentiation is linear, polynomials can be differentiated using this rule.

The power rule holds for all powers except for the constant value which is covered by the constant rule. The derivative is just rather than which is undefined when .

The inverse of the power rule enables all powers of a variable except to be integrated. This integral is called Cavalieri's quadrature formula and was first found in a geometric form by Bonaventura Cavalieri for . It is considered the first general theorem of calculus to be discovered.

This is an indefinite integral where is the arbitrary constant of integration.

The integration of requires a separate rule.

Hence, the derivative of is and the integral of is .

Read more about Power Rule:  Power Rule, Differentiation of Arbitrary Polynomials, Generalizations

Famous quotes containing the words power and/or rule:

    It is only a short step from exaggerating what we can find in the world to exaggerating our power to remake the world. Expecting more novelty than there is, more greatness than there is, and more strangeness than there is, we imagine ourselves masters of a plastic universe. But a world we can shape to our will ... is a shapeless world.
    Daniel J. Boorstin (b. 1914)

    This administration is going to be a compassionate administration. We believe in the Golden Rule of doing unto others as you would have them do unto you.
    Lyndon Baines Johnson (1908–1973)